instargramm.ru

Основания для выбора топологии сети. Топологии локальных сетей

Компьютеры и другие компоненты локальной сети могут соединяться между собой различными способами. Используемая схема физического расположения сетевых компонентов называется топологией(Topology). Топология сети определяется геометрической фигурой, образованной линиями связи между компьютерами, или физическим расположением по отношению друг к другу компьютеров, связанных между собой. Топология сети может служить одной из характеристик для сравнения и классификации различных компьютерных сетей.

Существуют три основные топологии построения локальной сети:

– звезда (Star);

– кольцо (Ring);

– шина (Bus).

В сети с топологией «звезда» все компьютеры соединены с центральным компьютером, или (hub – центр). Все данные поступают на центральный узел, который передает их получателю непосредственно. В этой топологии отсутствуют прямые связи между компьютерами сети. Передача всей информации происходит только через хаб (центральный компьютер). В качестве хаба может использоваться специальное устройство – концентратор, представляющий собой многопортовый репитер (repeater – повторитель). Основная функция репитера – получив данные на одном из портов, немедленно перенаправить их на другие порты.

Организация сети с топологией «звезда» проста и эффективна. При обрыве одного из кабелей, соединяющего отдельный компьютер сети с хабом, связь между остальными компьютерами, включенными по данной схеме, останется работоспособной. Если же из строя будет выведен сам центральный компьютер, то передача данных между компьютерами такой сети будет невозможна.

Достоинства звездообразной топологии:

– нарушение соединения в одном месте, кроме центрального узла, не прерывает работы локальной сети;

– при подключении большого количества компьютеров не происходит снижения производительности;

– безопасность информации обеспечивается на высоком уровне, так как компьютеры не получают чужих данных.

Недостатки звездообразной топологии:

– большой расход соединительного кабеля;

– поломка центрального узла приводит к неработоспособности всей сети;

– наращивание сети сопряжено с большими финансовыми затратами.

В топологии типа «кольцо» отсутствуют концевые точки соединения, т.е. сеть получается замкнутой в неразрывное кольцо.

В сети, построенной по кольцевой топологии, данные передаются в одном направлении от одного компьютера «кольца» к другому. Компьютер не передает информацию, пока не получит специальный маркер.

Достоинства кольцевой топологии:

– при подключении большого количества компьютеров происходит лишь незначительное снижение производительности.

Недостатки кольцевой топологии:

– нарушение соединения в одном месте приводит к прекращению работы всей локальной сети;

– безопасность информации обеспечивается не на очень высоком уровне: данные, посланные одним компьютером сети другому, могут быть легко перехвачены любым из компьютеров сети, которому они не предназначены, что может нарушить конфиденциальность передаваемой информации.

Топология «шина» использует для передачи данных один общий канал связи (чаще всего выполненный на основе коаксиального кабеля), к которому подключаются все компьютеры локальной сети.

Работа в сети с топологией «шина» осуществляется следующим образом. Когда один из компьютеров локальной сети с шинной топологией отправляет данные, они передаются по кабелю в обоих направлениях и принимаются всеми без исключения компьютерами, но использует их только тот из них, кому они были предназначены. Данные в сети с топологией «шина» могут следовать в любом направлении одновременно. На противоположных концах шины устанавливаются специальные заглушки – терминаторы.

Достоинства шинной топологии:

– легкость наращивания сети;

– не очень высокая стоимость оборудования.

Недостатки шинной топологии:

– нарушение соединения в одном месте приводит к неработоспособности всей локальной сети;

– при подключении большого количества компьютеров к одной шине происходит резкое снижение производительности;

– безопасность информации обеспечивается не на высоком уровне

Рассмотрев топологии локальных сетей я выбрала топологию-звезда. Из-за достоинств этой топологии. Рассмотрим данную топологию подробней. Звезда – это наиболее распространенная в России и Европе топология. Звезда имеет центральный блок – концентратор (hub) или коммутатор (switch). Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте сети RelCom. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Структура топологии ЛВС в виде «звезды»

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Центральный узел управления – сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра. Но есть и недостаток: если центральный компонент выйдет из строя – остановится вся сеть. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором (коммутатором)), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры по сети этот сбой не повлияет.

Под топологией (компоновкой, конфигурацией, структурой) компьютер­ной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится прежде всего к локальным сетям, в которых структуру связей можно легко проследить. В глобаль­ных сетях структура связей обычно скрыта от пользователей и не слиш­ком важна, так как каждый сеанс связи может производиться по своему собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, на­дежность работы, возможности расширения сети. И хотя выбирать топо­логию пользователю сети приходится нечасто, знать об особенностях ос­новных топологий, их достоинствах и недостатках, наверное, надо всем.

Существует три основных топологии сети:

шина (bus), при которой все компьютеры параллельно под­ключаются к одной линии связи и информация от каждого компьютера одновременно передается всем остальным ком­пьютерам (рис. 6.1);

звезда (star), при которой к одному центральному компью­теру присоединяются остальные периферийные компьюте­ры, причем каждый из них использует свою отдельную ли­нию связи (рис. 6.2);

кольцо (ring), при которой каждый компьютер передает ин­формацию всегда только одному компьютеру, следующему в цепочке, а получает информацию только от предыдущего в цепочке компьютера, и эта цепочка замкнута в «кольцо» (рис. 6.3).

Рис. 6.1 – Сетевая топология «шина»

Рис. 6.2 – Сетевая топология «звезда»

Рис. 6.3 – Сетевая топология «кольцо»

На практике нередко используют и комбинации базовых топологий, но большинство сетей ориентированы именно на эти три. Рассмотрим теперь кратко особенности перечисленных сетевых топологий.

ТОПОЛОГИЯ «ШИНА»

Топология «шина» (или, как ее еще называют, «общая шина») самой сво­ей структурой предполагает идентичность сетевого оборудования ком­пьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать только по очереди, так как линия связи единственная. В противном случае передаваемая информация будет ис­кажаться в результате наложения (конфликта, коллизии). Таким обра­зом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно). В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, что увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединитель­ного кабеля по сравнению с другими топологиями. Правда, надо учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно.



Так как разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента, аппаратура сете­вого адаптера при топологии «шина» получается сложнее, чем при дру­гих топологиях. Однако из-за широкого распространения сетей с тополо­гией «шина» (Ethernet, Arcnet) стоимость сетевого оборудования получается не слишком высокой.

Шине не страшны отказы отдельных компьютеров, так как все осталь­ные компьютеры сети могут нормально продолжать обмен. Может пока­заться, что шине не страшен и обрыв кабеля, поскольку в этом случае мы получим две вполне работоспособные шины. Однако из-за особенностей распространения электрических сигналов по длинным линиям связи не­обходимо предусматривать включение на концах шины специальных со­гласующих устройств - терминаторов, показанных на рис. 6.1 в виде пря­моугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Так что при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть. Любой отказ сете­вого оборудования в шине очень трудно локализовать, так как все адап­теры включены параллельно, и понять, какой из них вышел из строя, не так-то просто.

Рис. 6.4 - Соединение сегментов сети типа «шина» с помощью репитера

При прохождении по линии связи сети с топологией «шина» информаци­онные сигналы ослабляются и никак не восстанавливаются, что наклады­вает жесткие ограничения на суммарную длину линий связи, кроме того, каждый абонент может получать из сети сигналы разного уровня в зави­симости от расстояния до передающего абонента. Это предъявляет допол­нительные требования к приемным узлам сетевого оборудования. Для уве­личения длины сети с топологией «шина» часто используют несколько сегментов (каждый из которых представляет собой шину), соединенных между собой с помощью специальных восстановителей сигналов - репи­теров, или повторителей (на рис. 6.4 показано соединение двух сегментов). Однако такое наращивание длины сети не может продолжаться беско­нечно, так как существуют еще и ограничения, связанные с конечной ско­ростью распространения сигналов по линиям связи.

ТОПОЛОГИЯ «ЗВЕЗДА»

«Звезда» - это топология с явно выделенным центром, к которому под­ключаются все остальные абоненты. Весь обмен информацией идет ис­ключительно через центральный компьютер, на который таким образом ложится очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии абонентов в данном случае го­ворить не приходится. Как правило, именно центральный компьютер яв­ляется самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией «звезда» в принципе невозможны, так как управление полностью централизовано, конфликтовать нечему.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера никак не отражается на функцио­нировании оставшейся части сети, зато любой отказ центрального ком­пьютера делает сеть полностью неработоспособной. Поэтому должны при­ниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры. Обрыв любого кабеля или корот­кое замыкание в нем при топологии «звезда» нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально про­должать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию только в одном направлении. Таким образом, на каждой ли­нии связи имеется только один приемник и один передатчик. Все это су­щественно упрощает сетевое оборудование по сравнению с шиной и из­бавляет от необходимости применения дополнительных внешних терминаторов. Проблема затухания сигналов в линии связи также реша­ется в «звезде» проще, чем в «шине», ведь каждый приемник всегда по­лучает сигнал одного уровня.

Серьезный недостаток топологии «звезда» состоит в жестком ограниче­нии количества абонентов. Обычно центральный абонент может обслу­живать не более 8-16 периферийных абонентов. Если в этих пределах подключение новых абонентов довольно просто, то при их превышении оно просто невозможно. Правда, иногда в звезде предусматривается воз­можность наращивания, то есть подключение вместо одного из перифе­рийных абонентов еще одного центрального абонента (в результате по­лучается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 6.2, носит название активной, или истинной, звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 6.5). В настоящее время она распространена гораздо больше, чем активная звезда. Достаточно сказать, что она используется в самой популярной на сегодняшний день сети Ethernet.

Рис. 6.5 - Топология «пассивная звезда»

В центре сети с данной топологией помещается не компьютер, а концен­тратор, или хаб (hub), выполняющий ту же функцию, что и репитер. Он восстанавливает приходящие сигналы и пересылает их в другие линии связи. Хотя схема прокладки кабелей подобна истинной или активной звезде, фактически мы имеем дело с шинной топологией, так как инфор­мация от каждого компьютера одновременно передается ко всем осталь­ным компьютерам, а центрального абонента не существует. Естественно, пассивная звезда получается дороже обычной шины, так как в этом слу­чае обязательно требуется еще и концентратор. Однако она предостав­ляет целый ряд дополнительных возможностей, связанных с преимуще­ствами звезды. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспектив­ной топологией.

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретрансли­рует поступающие на него сигналы, но и производит управление обме­ном, однако сам в обмене не участвует.

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности сети пу­тем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шины), а также ограничивать доступ посто­ронних лиц к жизненно важным для сети точкам подключения. К каждо­му периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два ка­беля (каждый из них передает в одном направлении), причем вторая си­туация встречается чаще.

Общим недостатком для всех топологий типа «звезда» является значи­тельно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 6.1), то при вы­боре топологии «звезда» понадобится в несколько раз больше кабеля, чем при топологии «шина». Это может существенно повлиять на стоимость всей сети в целом.

ТОПОЛОГИЯ «КОЛЬЦО»

«Кольцо» - это топология, в которой каждый компьютер соединен лини­ями связи только с двумя другими: от одного он только получает инфор­мацию, а другому только передает. На каждой линии связи, как и в слу­чае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов. Важная осо­бенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера, поэтому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами коль­ца. Четко выделенного центра в данном случае нет, все компьютеры мо­гут быть одинаковыми. Однако довольно часто в кольце выделяется спе­циальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправ­ными (в отличие, например, от шинной топологии). Одни из них обяза­тельно получают информацию от компьютера, ведущего передачу в дан­ный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую переда­чу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совершенно безболез­ненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количе­ство абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно является самой устойчивой к перегруз­кам, она обеспечивает уверенную работу с самыми большими потоками передаваемой по сети информации, так как в ней, как правило, нет конф­ликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

Так как сигнал в кольце проходит через все компьютеры сети, выход из строя хотя бы одного из них (или же его сетевого оборудования) наруша­ет работу всей сети в целом. Точно так же любой обрыв или короткое за­мыкание в любом из кабелей кольца делает работу всей сети невозмож­ной. Кольцо наиболее уязвимо к повреждениям кабеля, поэтому в этой топологии обычно предусматривают прокладку двух (или более) парал­лельных линий связи, одна из которых находится в резерве.

В то же время крупное преимущество кольца состоит в том, что ретранс­ляция сигналов каждым абонентом позволяет существенно увеличить размеры всей сети в целом (порой до нескольких десятков километров). Кольцо в этом отношении существенно превосходит любые другие топо­логии.

Недостатком кольца (по сравнению со звездой) можно считать то, что к каждому компьютеру сети необходимо подвести два кабеля.

Иногда топология «кольцо» выполняется на основе двух кольцевых ли­ний связи, передающих информацию в противоположных направлени­ях. Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

ДРУГИЕ ТОПОЛОГИИ

Кроме трех рассмотренных основных, базовых топологий нередко при­меняется также сетевая топология «дерево» (tree), которую можно рас­сматривать как комбинацию нескольких звезд. Как и в случае звезды, де­рево может быть активным, или истинным (рис. 6.6), и пассивным (рис. 6.7). При активном дереве в центрах объединения нескольких линий свя­зи находятся центральные компьютеры, а при пассивном - концентрато­ры (хабы).

Рис. 6.6 - Топология «активное дерево»

Рис. 6.7 - Топология «пассивное дерево». К – концентраторы

Применяются довольно часто и комбинированные топологии, среди кото­рых наибольшее распространение получили звездно-шинная (рис. 6.8) и звездно-кольцевая (рис. 6.9).

Рис. 6.8 - Пример звездно-шинной топологии

В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. В этом случае к концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты, то есть на самом деле реализуется физическая топология «шина», включающая все компьютеры сети. В данной топологии может использоваться и несколько кон­центраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. Таким об­разом, пользователь получает возможность гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количе­ство компьютеров, подключенных к сети.

Рис. 6.9 - Пример звездно-кольцевой топологии

В случае звездно-кольцевой (star-ring) топологии в кольцо объединяют­ся не сами компьютеры, а специальные концентраторы (изображенные на рис. 6.9 в виде прямоугольников), к которым в свою очередь подключа­ются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов все линии связи образуют замкнутый кон­тур (как показано на рис. 6.9). Данная топология позволяет комбиниро­вать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Сейчас наступил век компьютеризации. Компьютеры стоят даже в самых маленьких фирмах.

Естественно для полноценной работы требуется обмен информацией. Для этого и проектируются локальные сети.

Что же позволяет локальная сеть:

1. Обмен информацией между членами сети. (Документы, выполненные работы студентов, программы и т.д.)

Скорость современной сети совершенно свободно позволяет смотреть фильмы и слушать музыку с удалённого компьютера, даже не переписывая их себе на жесткий диск, что говорить о передаче документов. Но в процессе работы могут использоваться программы, имеющие большой объем. Поэтому если это вдруг потребуется, то 1 гигабайт данных можно переписать всего за десять минут.

2. Возможность совместно использовать такое оборудование как принтеры, CD-RW/DVD/DVD-RW.

3. Совместное использование канала доступа в Интернет.

Тут масса вариантов, дело в том, что когда канал доступа в Интернет достаточно широк, речь идет о выделенной линии или ADSL, то даже при одновременном доступе большого количества пользователей ощутимого падения скорости не произойдет.

4. Мультиплатформность

С помощью ЛВС можно объединять компьютеры любых типов (Например: PC и Macintosh) и с любыми операционными системами. (Windows, Unix, OS/2, MacOs).

1.Выбор топологии и строения сети

1.1 Строение сети

Строение сети зависит полностью от физического и логического местонахождения компьютеров в сети.

У нас: 3 отдельных аудитории с компьютерами (логически - нижний уровень, так как это студенты);

1 группа компьютеров преподавателей, находящихся по одному в каждой аудитории и 4 в отдельном кабинете (средний уровень).

2 сервера: Интернет-сервер и файл-сервер (они входят в группу преподавателей - для удобства администрирования).

(схему строения смотри в приложении №1)

1.2 Выбор топологии сети.

Топологии бывают нескольких типов:

· Шинные (моноканал)

Шинная топология, реализуемая кабелем, прокладываемым от одного компьютера к другому в виде последовательной цепочки, напоминающей гирлянду на новогодней елке. Все сигналы, предаваемые любым компьютером в сеть, идут по шине в обоих направлениях ко всем остальным компьютерам. Два конца шины должны быть «закрыты» при помощи электрических сопротивлений, обнуляющих напряжения, приходящие на эти концы, для того, чтобы, сигналы не отражались и не уходили в обратном направлении. Основной недостаток шинной топологии состоит в том, что, подобно елочной гирлянде, дефект кабеля в любом месте его протяженности делит сеть на две части, не способные общаться между собой. Большая часть сетей, построенных на коаксиальных кабелях, таких как сети Ethernet, используют шинную архитектуру.

· Кольцевые

Топология кольца функциональна, эквивалентна шине, у которой концы соединены друг с другом; таким образом, сигналы передаются от одного компьютера к другому, двигаясь по кругу. Однако коммуникационное кольцо - это только логическая абстракция, а не физическая конструкция. Фактически сеть представляет собой звезду, но при этом специальный концентратор реализует логическое кольцо путем пересылки входящего сигнала только через следующий нисходящий порт (вместо передачи через все порты, как это делает концентратор при применении топологии «звезда»). Каждый компьютер, получив входящий сигнал, обрабатывает его (если это необходимо) и посылает обратно концентратору для передачи следующей рабочей станции в сети. В соответствии с данным принципом работы, система, передающая сигнал в сеть, должна также удалить его после того, как он обошел все кольцо полностью. Сети, сконструированные на основе топологии «кольцо», могут использовать различные типы кабеля. Например, сети Token Ring используют витую пару, в то время как FDDI - сети реализуют топологию «кольцо» с помощью оптоволоконных кабелей.

· Древовидные

Это подвид смешанной, состоящей из двух шин.

· Звездообразные

Топология «звезда» использует отдельный кабель для каждого компьютера, проложенный от центрального устройства, называемого хабом (hub) или концентратором. Концентратор транслирует сигналы, поступающие на любой из его портов, на все остальные порты; в результате чего сигналы, посылаемые одним узлом, достигают остальных компьютеров. Сеть на основе «звезды» более устойчива к повреждениям, нежели сеть на базе шинной архитектуры, так как повреждение кабеля затрагивает непосредственно только тот компьютер, к которому он подсоединен, а не всю сеть. Большинство сетей, использующих кабель типа «витая пара», монтируются по топологии «звезда», например, 10 BaseT Ethernet.

· Смешанные

Это несколько соединенных между собой разных или одинаковых топологий.

Теперь нам нужно определиться какая топология будет у нашей сети. Учитывая, что у нас имеется несколько классов, учительская сеть, подключение к Интернету, то наша сеть по топологии будет относится к смешанной - древовидная звезда.

Использование именно этой топологии выбрано, так как нам нужно соединить несколько разных сегментов в одну «глобальную» сеть.

Использование маршрутизации - неоправданно. DNS - сервера, домены, шлюзы и т.д. использоваться не будут. Это упростит нашу сеть и немного улучшит ее работоспособность:

при использовании шлюза или домена может возникнуть проблема - при его поломке весь сегмент теряет работоспособность.

(Схему топологии смотри в приложении №2.)

2. Выбор составляющих сети

2.1 Сетевые кабели

Есть 3 основных типа сетевых проводников с массой вариаций, от выбора сетевого кабеля зависит тип сетевых карт и коммутатора, которые мы будем использовать в своей сети (внешний вид в приложении №3).

2.1.1 Витая Пара (Twisted Pair)

В настоящее время наиболее распространённый сетевой проводник по структуре напоминает многожилковый телефонный кабель, и имеет 8 медных жилок перевитых друг с другом и хорошую плотную изоляцию из поливинилхлорида. Обеспечивает высокую скорость соединения до 100 мегабит. Бывает Неэкранированная и Экранированная витая пара. Продается в большинстве компьютерных фирм.

Витая пара малоподвержена электромагнитным наводкам, особенно экранированная. Даже при прокладке неэкранированной витой пары вблизи электрораспределительного щитка, и вместе с линиями высокого напряжения отмечалась относительно стабильная работа сети на скоростях свыше 80 мегабит в секунду. Кабель чрезвычайно легко ремонтируется, (несмотря на то, что по стандартам восстановлению повреждённый участок не подлежит) и наращивается с помощью изоленты и ножниц. Даже имея многочисленные участки восстановленных таким образом разрывов, сеть на витой паре работает стабильно, хотя и скорость связи несколько падает.

2.1.1а Сеть на 1000 мегабит (Gigabit Lan)

Кроме этого, в сетях основанных на витой паре можно использовать различные нестандартные проводники позволяющие получить новые характеристики и свойства сети.

1000 мегабитные сети это дальнейшая ступень эволюции сетей на витой паре. В отличие от 10/100 мегабитных сетей, в которых используются только 4 проводника из 8, при гигабитном соединении задействованы все 8 проводников, с использованием соответствующего оборудование сетевых карт и коммутатора с поддержкой гигабитного соединения. Скорость передачи данных составляет порядка 80-100 мегабайт в секунду что, как правило, значительно превышает потоки передачи данных жестких дисков (40-60 мегабайт/сек). Не смотря на то, что такое соединение в 10 раз быстрее обычного 100 мегабитного, использовать гигабитную сеть несколько затруднительно из-за высокой стоимости гигабитных коммутаторов и сетевых карт.

Так же при использовании гигабитной сети необходимо, что бы витая пара прокладывалась строго по стандартам без сильных перегибов, а так же недопустимо использовать скрутку-пайку для наращивания подобной сети.

2.1.2 Коаксиальный Кабель (Coaxial)

Один из первых проводников, использовавшихся для прокладки сетей. Содержит в себе центральный проводник, слой изолятора в оплетке и пластиковую изоляцию, иногда слоев изоляции больше иногда меньше. Максимальная скорость передачи данных 10 мегабит. Он достаточно сильно подвержен электромагнитным наводкам. В случае повреждения ремонтируется с трудом, требуется пайка и тщательная изоляция, но даже после этого восстановленный участок работает медленно и нестабильно. В зоне повреждённого участка появляются отражения электромагнитных волн, распространяющихся в коаксиальном кабеле, что приводит к искажениям передаваемого сигнала. Единственным преимуществом коаксиального кабеля перед витой парой является большее расстояние около 600-700 метров, на которое можно передавать данные. Однако использование витой пары и альтернативных проводников, например полевого кабеля П-296 позволяет добиться устойчивой связи на скорости 10 мегабит на расстоянии до 500 метров.

В настоящее время коаксиальный кабель в основном используется в качестве проводника сигнала спутниковых тарелок и прочих антенн. В компьютерных сетях использование коаксиального кабеля, как правило, не оправданно.

2.1.3 Оптико-волоконный кабель (Optic Fiber)

Один или несколько световодов, хорошо защищенных, пластиковой изоляцией. Сверхвысокая скорость передачи данных, кабель абсолютно не подвержен помехам. Расстояние между системами соединенными оптиковолокном может превышать 2 километра. Однако кабель стоит чрезвычайно дорого и для работы с ним требуется специальное сетевое оборудование (Сетевые карты, Концентраторы и т.д.), которое так же стоит недёшево. Оптиковолокно не подлежит ремонту, в случае повреждения участок приходится прокладывать заново.

Пожалуй, очевидно, что оптимальным по всем характеристикам и стоимости для использования в нашей сети является витая пара.

Ее стоимость 9руб. за метр.

(О способе ее монтажа смотри в Приложении №4)

2.2 Сетевой Коммутатор

Hub - (Концентратор) когда сетевая карта отсылает пакет данных, Hub просто делит и усиливает сигнал так, что его получают все пользователи сети, но принимает только та сетевая карта, которой адресован пакет данных. Очевидно, что при одновременной работе нескольких пользователей скорость сети резко падает. В настоящее время большинство фирм попросту прекратили выпуск концентраторов, и перешли на выпуск более эффективных коммутаторов Switch.

Switch - (Коммутатор) в отличие от Hub анализирует откуда и куда отправлен пакет информации и соединяет только эти компьютеры, в то время как остальные каналы остаются свободными. Конечно, лучше использовать Switch, так как он работает гораздо быстрее особенно в сетях с большим количеством пользователей. Внешне Switch практически не отличается от Hub.

(приложение №3)

2.2.1.1 Какой Коммутатор выбрать?

В настоящее время существует множество моделей и типов сетевых коммутаторов, их цена и функции очень различаются.

2.2.1.2 Скорость работы

Коммутатор может работать на скорости 10 или 100 мегабит от этого зависит скорость всей сети.

10 мегабитные коммутаторы сейчас стоят порядка 15$-20$, но не стоит пытаться сэкономить, используя более дешевый 10 мегабитный коммутатор. Скорости 10 мегабит вполне достаточно для небольших текстов, но это не вполне подходят для активного обмена значительными (несколько гигабайт) объемами информацией особенно в большой локальной сети. Кроме того, нужно учитывать, что на самом деле 10 мегабит (около 1.2 мегабайта в сек.) это максимальная Теоретическая скорость, на самом деле реально данные будут предаваться со скоростью около 6-8 мегабит, на длинных отрезках сети и того меньше.

Поэтому очевидна необходимость использования 100 мегабитного оборудования.

2.2.1.3 Количество портов

Это определяющий показатель характеризует количество компьютеров, которые можно к такому концентратору подключить. Так же во многом данный параметр определяет цену Switch.

Наш выбор пал на свичи с 16 портами: 15 компьютеров + 1 «учитель-маршрутизатор».

2.2.1.4 Поддержка Принт Сервера

Весьма полезная, но не всегда необходимая функция, которая правда присутствует далеко не у всех коммутаторов. Это наличие на коммутаторе дополнительного, как правило, LPT реже USB разъема, если подключить к этому разъему принтер, он станет, доступен всем членам ЛВС. При этом принтер не зависит, от какого бы то ни было компьютера сети.

Нам эта функция не требуется, так как принтеры имеются на учительских компьютерах.

2.2.1.5 Поддержка дополнительных сетевых проводников

Некоторые так называемые гибридные коммутаторы имеют дополнительные BNC разъемы (под коаксиальный кабель или под оптоволокно). В виду вышеперечисленных сложностей, при использовании коаксиального и оптико-волоконного, приобретать гибридные коммутаторы не стоит. К тому же, их цена намного выше обычных.

Коммутатор Ethernet SwitchHub 16port 10/100MBps

Качественные и дешевые поддерживают соединение 100 мегабит, они достаточно компактны, не требуют никакой настройки и стоят в пределах 35-45$, они оптимально подходят для постройки ЛВС.

2.2.3 Объединяем 2 коммутатора

У большинства современных коммутаторов/концентраторов существует специальный Uplink разъем (Он часто объединяется с первым портом концентратора) в него можно просто воткнуть обычный стандартно обжатый сетевой кабель и все.

Если же Uplink порт уже занят либо его нет. Тогда вам потребуется кроссовер витая пара. Кроссовер кабелем можно объединить 2 или более коммутаторов, используя любые одинаковые порты.

3. Выбор комплектующих компьютеров

Наверное, сразу стоит оговориться, что мое мнение - компьютеры студентов и преподавателей должны быть одинаковыми. Я думаю, это сделает небольшой акцент на некоем равенстве преподавателя и студента. К тому же так проще подобрать среднюю конфигурацию компьютера, удовлетворяющего требованиям и тех и других.

В этой главе подробно описаны рабочие станции учителей и студентов.

3.1 Нужно ли «видео» и «звук»?

Компьютер есть, наверное, у каждого третьего. За последние 10 лет был совершен огромный скачек в производительности комплектующих.

Сейчас появляется много новых программ, предъявляющих большие требования к компьютерам. Но есть одно НО - это, в основном, либо игры либо серьезные программы, работающие с 2D и 3D графикой (видео-, фото- и мульт- 2D и 3D редакторы).

Разрабатываемая сеть такими вопросами заниматься не будет. Конечно, PhotoShop и Компас студенты изучают, но у них не такие большие требования.

Значит, делаем вывод:

Мощные звуковая и видео карты нам не требуются;

На этом можно сэкономить, купив материнскую плату со встроенными «звуком» и «видео».

3.2 Материнская плата

Исходя из выше сказанного и с учетом возможной дальнейшей модернизации, я решил взять за основу материнскую плату EPOX 5EGA+.

Технические характеристики:

· Чипсет:

· Северный мост: 915G

· Южный мост: ICH6R

· Процессор: Pentium 4, Celeron, поддержка Hyper Threading.

· Память: двухканальная DDR 400/333/266 - 4 разъема, до 4Гб.

· Слоты расширения: 4x PCI, 2x PCI Express 1x, PCI Express 16x

· Дисковая подсистема: UDMA ATA 100/66, 2x UDMA ATA133, 4x Serial ATA, поддержка RAID0, RAID1, RAID0+1

· Интегрированные решения:

· Видеокарта: Intel GMA900

· Сетевой адаптер: Marvell 88e8001 1Гб.

· Разъемы: 2x Com, LPT, VGA, MIDI, PS/2 клавиатура, PS/2 мышь, S/P DIF (вход/выход), RJ45, 8x USB 2.0/1.1, звук - линейный вход, многоканальные выходы и микрофон

· Форм-фактор: АТХ

· Цена: $137

Я решил остановиться именно на этой плате, так как она, по моему мнению, является средним соотношением цена/качество.

Эта плата поддерживает PCI слоты, что очень полезно сейчас (к тому же их 4!). И она поддерживает PCI Express 1х слоты, что будет полезным в будущем при возможной модернизации.

В эту «мать» встроена довольно не плохая видео карта Intel GMA 900. Это один из последних чипов. Плюс при отказе этого видео, всегда можно поставить видео PCI Express 16x (что полезно - так как AGP карты в будущем начнут «исчезать»). Стоит отметить, что встроенная карта поддерживает DX9.0.

Комплектация у этой платы достаточно полная: инструкция (в том числе на русском), диск с драйверами, шлейфы, 2 переходника для питания Molex-SATA, 2 кабеля SATA, PCI-планка с малым COM и MIDI портами. К тому же в коробке имеется отвертка (2 крестовые и 2 обычные насадки), набор радиаторов для силовых конденсаторов и термоэлемент для измерения температуры у интересующего Вас компонента внутри компьютера - ПО на диске.

У этой платы всего два явных недостатка:

1) слегка завышенная цена;

2) необычное расположение памяти - она расположена близко к краю, это может затруднить смену/установку, так как она может оказаться под CD-ROM.

3.3 Процессор

Исходя из соображений материальной экономии и того, что на этих компьютерах не будут выполняться задачи требующие больших ресурсов, я решил остановится на процессоре Intel Celeron D.

Технические характеристики:

· Ядро: Prescott. Разрядность - 3 бит.

· Разъем: LGA775, Socket 478.

· Частотные характеристики: тактовая частота - 2,26 - 2,93 ГГц. Частота системной шины - 533 МГц.

· Термоэлектрические характеристики: максимальная температура ядра - 67град., рассеиваемая мощность - 73 - 84 Вт, напряжение ядра - 1,3 - 1,4 В.

· Кеши: кеш первого уровня - 16 кбайт данных, 12000 микроинструкций. Кеш второго уровня - 256 кбайт. Шина L1-L2 разрядностью 256 бит.

· Вычислительные конвейеры: конвейер длинной в 31 стадию. Три конвейерных блока ALU, два конвейерных блока FPU, два блока вычисления адреса.

· Дополнительные наборы команд: SSE, SSE2, SSE3, MMX.

· Особенности: поддержка технологии Execute Disable Bit (только для платформы LGA775)

· Цена: 90$

Этот процессор можно назвать «обрезанным Пентиумом». Так как, во-первых, у него очень существенно, в 4 раза, уменьшен размер кеша второго уровня (вместо 1024Mb - 256Mb). Во-вторых, частота системной шины составляет не 800, а лишь 533 МГц. Наконец, ядро этих процессоров лишено поддержки технологии Hyper-Threading, заметно ускоряющей выполнение многопоточных приложений.

«Узкое горлышко» в виде уменьшенного кеша и сниженной частоты системной шины существенно ограничивают производительность моделей Intel Celeron D. С другой стороны, за счет высокой частоты они способны добиваться неплохих результатов в работе.

Таким образом, мы получаем дешевый процессор начального уровня.

При использовании нашей материнской платы всегда есть вариант модернизации.

3.4 Жесткий диск

По моему мнению, для рабочих станций учеников достаточно 80Гб, а для учителей 120Гб.

Соответственно я подобрал неплохие и относительно дешевые SATA HDD.

Характеристики

Форматированная емкость, Гб

Скорость вращения шпинделя, об/мин

Объем кеш-памяти, Мб

Полное время поиска, мс

Шум холостого хода, дБ

Шум при поиске

Рабочая температура, °С

Количество пластин

Количество головок

Особенности

Минимальный шум в режиме ожидания.

Нет звона и почти нет вибрации.

Малый нагрев.

В тестах показал средний по быстродействию результат.

В режиме поиска головки не производят значительного шума.

Шум в режиме ожидания небольшой.

Звона нет, вибрация незначительна.

Умеренный нагрев.

3.5 ОЗУ, привод, FDD, блок питания, клавиатура и мышь

Эти части системного блока в подробном описании не нуждаются.

ОЗУ - оперативная память.

Сравнение DDR и DDR2 - не имеет смысла, так как мы ограничены возможностями материнской платы.

Естественно ставить на нашу систему менее 512Мб бессмысленно, но и более - тоже. Фирма - изготовитель будет зависеть только от цены (для нас это главный фактор).

Цена приблизительно 60$

Привод - устройство чтения компакт-дисков.

В настоящее время часто стали применяться DVD-технологии, к тому же стоимость недорогих CD и DVD приводов отличается примерно на $5-10.

Вывод - мы покупаем DVD-ROM (около $40) для «студентов» и DVD-RW и DVD-ROM (вместе около $120) для «учителей».

FDD - устройство чтения дискет.

Казалось бы ненужная, но часто спасающая часть компьютера.

Стоимость в районе $10

Блок питания - это то что дает электричество всему системному блоку.

Вместе с блоком питания (в комплекте) продаются и корпуса, но внешний вид нас не интересует.

Компьютеры достаточно требовательны к электричеству, поэтому менее 350Вт нам не подходит.

Стоимость около $25-35.

Клавиатура и мышь - неотъемлемые части компьютера.

Внешний вид и «дополнительные функции» нас не интересуют, наш выбор - самое дешевое и надежное (беспроводные нам не подходят).

Все вместе $10-15.

3.6 Монитор

Здесь нам предстоит сделать выбор: цена - качество. Т.е. какой монитор купить: ЖК или ЭЛТ?

ЖК - новая технология. Она более безопасна для глаз, требует меньшего количества расхода электричества. Но для нас это дорого. Одни из самых дешевых ЖК мониторов (17 дюймов) стоят в районе 8500руб.

ЭЛТ - это дешевле. К тому же они обладают более четкой прорисовкой графики (хотя нам это не надо, но все же плюс). Стоимость: рабочее место учителя - 250$, рабочее место студента - 150$.

Таким образом, мы получаем общую стоимость компьютеров:

Компьютер на рабочем месте учителя - 811$

Компьютер на рабочем месте студента - 608$

3.7 Интернет-сервер и файл-сервер

Подробное описание «железа» этих машин (по моему мнению) не требуется, так как здесь важна производительность.

Интернет-сервер - компьютер, управляющий доступом в Интернет.

Он требуется для распределения и ограничения доступа в Интернет, отслеживания «утечки» трафика, дополнительной защиты от вирусов и хакеров из Интернета.

Наименование

Мат. Плата

Процессор

Оперативная память

2x DDR 512Mb Kingston

Maxtor 40Gb UATA

Блок питания (корпус)

LG 15” Studioworks 505E

Клавиатура + мышь

Файл-сервер - компьютер, предназначенный для хранения информации.

Файловый сервер выполняет следующие функции: хранение данных, архивирование данных, передача данных, авторизированный доступ к данным, контроль над сохранением и изменением файлов.

Наименование

Мат. Плата

Gigabyte GA-8i915P-G/i915P/s775

Процессор

Intel Pentium4 -3200E/1Mb 800FSB BOX

Оперативная память

2x DDR 512Mb Kingston

Seagate 300GB SATA

Блок питания (корпус)

LG 15” Studioworks 505E

Клавиатура + мышь

4. Настройки сети

Для соединения компьютеров будем пользоваться TCP/IP - протоколом. Это необходимо для использования некоторых программ и лучшей адресации при передаче информации.

4.1 Виды IP-адресов

Настойки внутри аудиторий будут практически одинаковыми - различие будет только в IP - адресе сегмента и названии группы.

Прежде всего - что такое IP-адрес:

Анатомия IP адресов

Перед погружением в изучение организации подсетей, мы должны усвоить основы IP-адресов.

IP адреса характеризуют сетевые соединения, а НЕ компьютеры!

Прежде всего, выясним основную причину недоразумения - IP адреса не назначаются на компьютеры. IP адреса назначены на сетевые интерфейсы на компьютерах.

А что стоит за этим?

На настоящий момент, много (если не большинство) компьютеров в IP-сети обладают единственным сетевым интерфейсом (и имеют, как следствие, единственный IP адрес). Компьютеры (и другие устройства) могут иметь несколько (если не много) сетевых интерфейсов - и каждый интерфейс будет иметь свой IP адрес.

Так, устройство с 6 работающими интерфейсами (например, маршрутизатор) будет иметь 6 IP адресов - по одному на каждую сеть, с которой он соединен.

Несмотря на это, большинство людей ссылаются на адреса машин, когда это касается IP адреса. Только помните, что это упрощенная форма для IP-адреса конкретного устройства на этом компьютере. Много (если не большая часть) устройств в Internet имеет только один интерфейс и, таким образом, единственный IP адрес.

IP-адреса как "четверка чисел разделенные точками"

В текущей (IPv4) реализации IP адресов, IP адрес состоит из 4-х (8-битовых) байтов - он представляет из себя 32 бита доступной информации. Это приводит к числам, которые являются довольно большими (даже когда написано в представлении десятичных чисел). Поэтому для удобства (и по организационным причинам) IP адреса обычно записываются в виде четырех чисел, разделенных точками. IP адрес

Пример этого - 4 (десятичных) числа разделенные (.) точками.

Поскольку каждое из этих чисел - десятичное представление байта (8 бит), каждое из них может принимать значения из диапазона от 0 до 255 (всего 256 уникальных значений, включая ноль).

Кроме того, часть IP-адреса компьютера определяет сеть, в которой находится данный компьютер, оставшиеся "биты" IP адреса определяют непосредственно компьютер (сетевой интерфейс)

IP-адреса делятся на 5 классов. Эти классы определяются благодаря маске подсети.

Маска подсети делит 32 бита адреса на 2 части. Одна часть - биты определения адреса сети (единицы). Другая часть - биты определения адреса сетевого интерфейса (нули).

Вот список масок первых трех классов сетей (в скобках разложение по битам):

· Класс А - 255.0.0.0

(1111 1111.0000 0000.0000 0000.0000 0000)

· Класс В - 255.255.0.0

(1111 1111.1111 1111.0000 0000.0000 0000)

· Класс С - 255.255.255.0

(1111 1111.1111 1111.1111 1111.0000 0000)

Из этих масок видно, что в классе А может быть мало сегментов, но много адресов компьютеров в каждом сегменте. В классе С - наоборот много сегментов, мало - адресов.

В каждом из классов могут использоваться только определенные IP-адреса:

Класс А: 0.0.0.0 - 127.0.0.0

Класс В: 128.0.0.0 - 191.255.0.0

Класс С: 192.0.0.0 - 223.255.255.0

Кроме этих классов существует деление на под сети - когда один из нулевых битов заменяются на единицы (например, 1111 1111.1100 0000.0000 0000.0000 0000). Так мы получаем из одной подсети несколько.

Биты, относящиеся к адресам подсети и интерфейса, не могут «перемешиваться» (1111 0101.1100… - работать не будет).

Таким образом:

Классы D&E (классы мультикастинга): 224.0.0.0 - 225.255.255.255

А это полный список возможных масок подсетей:

интерфейсов

(подсетей)

Зарезервированные IP-адреса для использования в локальных (не связанных с Интернет, то есть которые НИКОГДА не будут в сети ИНТЕРНЕТ) сетях такие:

· Одна сеть класса A 10.0.0.0

· 16 сетей класса B 172.16.0.0 - 172.31.0.0

· 256 сетей класса C 192.168.0.0 - 192.168.255.0

Кроме того нельзя использовать для адресации машин первый и последний адреса каждой подсети. Потому что эти адреса - адреса сети и широковещательный адрес.

Адрес сети - это адрес, в котором адрес хоста все 0 (он требуется адресации самой сети), широковещательный - соответственно, все 1(используется при отправлении информации сразу всем членам сегмента).

4.2 Настойки IP-адресов

Для нашей сети целесообразно использовать сети класса С, так как количество компьютеров в сегментах - небольшое.

Две из наших аудиторий объединены в общее помещение (каб. №30) , а третья - отдельное (каб. №36), сеть учительских машин тоже отдельный сегмент. Отсюда их адреса:

Аудитория №1: IP: 192.168.130.1 - 192.168.130.254

Маска: 255.255.255.0

Аудитория №2: IP: 192.168.230.1 - 192.168.230.254

Маска: 255.255.255.0

Аудитория №3: IP: 192.168.36.1 - 192.168.36.254

Маска: 255.255.255.0

«Учителя»: IP: 192.168.1.1 - 192.168.1.254

Маска: 255.255.255.0

Файл-сервер будет входить в подсеть учителей, его адрес - 192.168.1.254.

А Интернет-сервер имеет два интерфейса - один к сети «Учителя», другой к сети Интернет, его адреса - 192.168.1.253 и адрес с маской, выделенные провайдером Интернета.

Настройка файл-сервера не требуется за исключением установки необходимых программ и «открытия» ресурсов для сети.

Кроме того, каждая подсеть - это отдельная группа, для удобства использования сети. К тому же, названия группам и рабочим станциям сотрудники придумают сами, опять же для их удобства.

4.3 Настройка Интернет-сервера

Для его работы мы решили использовать ОС Windows 2000, потому что это проверенная надежная операционная система.

Настройки для сетевого интерфейса, относящегося к подсети учителей, будут такими:

IP:192.168.1.253

Маска:255.255.255.0

Настройки для сетевого интерфейса подключенного к Интернету выдает провайдер, поэтому мы их описывать не можем.

Для настройки Интернет-сервера мы вабрали программу UserGate.

Полное руководство по использованию и настройке UserGate в приложении №5.

сеть компьютер сервер файл

4.4 Настройки Файл-сервера

Для работы этого сервера мы решили использовать Windows XP. Эта система является самой удобной для использования на файл-сервере.

Настройки сетевого интерфейса:

IP:192.168.1.254

Маска:255.255.255.0

Для простоты настройки и администрирования файлового сервера мы решили открывать папки на доступ: папки с информацией не для студентов - паролятся, остальные держатся просто открытыми для чтения. И всего одна папка открытая для полного доступа без пароля - папка для студентов и их работ.

Для работы в сети необходимо использовать программы, которые ускорили бы этот процесс.

Вот некоторые из них (использовать по возможности последние версии программ):

1. Dr. Web (содержит только антивирус)

2. Антивирус и Антихакер (брандмауэр) Касперского

3. Panda Antivirus (содержит антивирус и брандмауэр)

Это антивирусы - программы которые предотвращают попадание вирусов на компьютер, а так же удаляют, блокируют и лечат их. Устанавливай те любой на выбор.

Советую использовать набор программ - «Lan Tricks». Все эти программы работают вместе (в LanScope есть ссылки на остальные):

1. LanSafety - программа, позволяющая запретить использование скрытых ресурсов.

2. LanScope - программа, очень удобная для сканирования сети.

3. LanSend - программа, позволяющая отправлять сообщения другим пользователям.

4. LanShutDown - программа, позволяющая выключать компьютеры в сети без использования программы сервера.

Есть еще один интересный сборник программ «KillSoft»:

1. KillCopy - скачивание информации по сети. Очень удобная программа - позволяет скачивать файлы частями (т.е. при обрыве связи скаченная часть файла остается у Вас, во вполне рабочем состоянии).

2. KillWatcher - позволяет отслеживать Ваших «посетителей» и при необходимости отключать их от Ваших ресурсов. Можно устанавить максимальное число одновременных подключений к Вашей машине.

Acttive Ports - эта программа будет полезна администраторам. Маленькая, но чрезвычайно полезная тулза, которая отображает все открытые TCP/IP и UDP порты. Также она расскажет вам какое приложение какой порт использует. Кроме того будет полезна для обнаружения троянов и программ удаленного администрирования. К сожалению только для NT/2k/2000/XP

DownLoad Master - Один из самых лучших и удобных менеджеров закачки. Отличный интерфейс, полный комфорт для пользователя, русскоязычность, множество функций и абсолютная бесплатность. позволяет значительно повысить скорость закачки файлов через Интернет с использованием HTTP, HTTPS и FTP протоколов.

RAdmin - программа для удаленного управления компьютером. Полезна в использовании учителями для контроля студентов.

DU Meter - маленькая и простая программа для отслеживания трафика на Вашем компьютере, выдает предупреждения о превышении выставленной нормы.

Список используемой литературы

1. www.sinetic.ru

2. SoftDoc.ru - «строим локальную сеть», Антон Ленников.

3. Курс лекций по дисциплине "Элементы теории передачи информации".

4. Курс лекций по предмету «Сети».

5. forum.ru-board.com

Размещено на Allbest.ru

Подобные документы

    Организационно-штатная структура офисного центра. Выбор и обоснование архитектуры сети. Сервисы конфигурации сервера. Выбор топологии сети. Установка и настройка Active Directory, DNS и файлового сервера под управлением СОС Windows Server 2012 R2.

    курсовая работа , добавлен 10.04.2017

    Выбор и экономическое обоснование топологии сети. Стоимость аренды каналов связи у интернет-провайдеров. Выбор и расчет стоимости активного и пассивного оборудования. Масштабируемость сети по параметрам пользователи, трафик, физический размер сети.

    курсовая работа , добавлен 05.01.2013

    Схема информационных потоков с учетом серверов. Выбор топологии и метода доступа корпоративной сети. Выбор коммутаторов, IP-телефонов и видеофонов, рабочих станций, вспомогательного серверного ПО, сетевых протоколов. Моделирование системы в GPSS.

    курсовая работа , добавлен 24.05.2013

    Разработка схемы локальной вычислительной сети отдела предприятия, включающей общий сервер. Определение коэффициента нагрузки, суммарного трафика сети. Выбор типов физической среды для соединения компьютеров в соответствии со стандартными параметрами.

    контрольная работа , добавлен 05.08.2011

    Разработка структурной схемы компьютерной сети. Планирование топологии сети, настройка серверов. Принципы распределения IP-адресов. Расчет удвоенной задержки распространения сигнала. Моделирование потоков трафика в сети. Сетевые протоколы, их особенности.

    курсовая работа , добавлен 23.12.2015

    Анализ существующих решений для построения сети. Настройка и установка дополнительных программ. Сравнение платформ программного маршрутизатора. Установка DHCP и DNS серверов. Выбор монтажного оборудования. Создание и настройка Active Directory.

    дипломная работа , добавлен 24.03.2015

    Выбор и обоснование архитектуры локальной вычислительной сети образовательного учреждения СОС Ubuntu Server. Описание физической схемы телекоммуникационного оборудования проектируемой сети. Настройка сервера, компьютеров и программного обеспечения сети.

    курсовая работа , добавлен 12.06.2014

    Выбор серверов и компьютеров для пользователей, операционной системы. Расчет сетевого оборудования. Обзор возможных угроз для сети и вариантов их предотвращения. Анализ рынка для приобретения качественных сетевых аксессуаров при минимальных затратах.

    курсовая работа , добавлен 11.07.2012

    Выбор топологии сети и расчет ее главных параметров. Выбор оборудования передачи данных, а также серверов и клиентских машин, расчет его стоимости. Подключение к действующей сети на расстоянии 532 метров. Соединение с сетью Интернет, принципы и этапы.

    курсовая работа , добавлен 05.12.2013

    Объединение компьютеров в сетевую вычислительную сеть. Сеть, построенная на основе сервера. Назначение и краткое описание комплектующих изделий. Эффективность и производительность всей сети. Использование топологии "звезда". Защита файлов пользователей.

Введение

2.Выбор стандарта и оборудования

4. Расчет стоимости оборудования

5. Расчет PDV

6. Расчет затухания

Введение

В настоящее время практически везде, где есть компьютеры, возникает необходимость соединить их в компьютерную сеть, для облегчения передачи данных и ускорения производственного процесса. Также сети повсеместно используются и в домашних условиях. При организации новой компьютерной сети перед разработчиками стоит вопрос в выборе подходящего стандарта сети, наилучшей конфигурации, оптимального быстродействия, а также дешевизны системы.

В данной работе необходимо разработать небольшую сеть на 17 компьютеров стандарта Fast Ethernet, этот стандарт в данный момент времени наиболее распространён и повсеместно используется. Также мы произведём расчёт стоимости сети.

1. Анализ задания и разработка плана

Для заданного плана расположения узлов сети выбрать оптимальную топологию сети и рассчитать минимальную суммарную длину соединительного кабеля. Топологию выбирать с учетом того, что между строениями планируется использовать только оптоволоконный кабель, внутри строений - коаксиальный кабель или витую пару.

Выбрать стандарт для реализации сети, соответствующее пассивное и активное оборудование и оценить его стоимость.

Величины параметров на плане расположения строений и рабочих станций


Рис.1 План расположения строений и размещения узлов локальной вычислительной сети.


Условные обозначения:

Строение (зона размещения узлов в сети)

Рабочая станция (узел сети)

Сервер (узел сети)

Коммутатор (SW) или маршрутизатор (М)

Выбор стандарта и оборудования

Сеть построена по технологии Fast Ethernet.

Исходя из критерия стоимости, здания объединены между собой по топологии “шина", а в домах применена топология “звезда", которая повышает надежность сети. Таким образом, для реализации сети с вышеприведенными характеристиками возможно использовать стандарты Fast Ethernet 100BaseTX, 100BaseT4 или 100BaseFX.

Официальный стандарт 802.3 установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:

100Base - TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type1;

100Base - T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3,4, или 5;

100Base - FX для многомодового оптоволоконного кабеля, используется два волокна.

Оборудование сетей распределяется на активное (повторители, концентраторы и др.) и пассивное (кабели, соединители и др.).

Для соединения рабочих станций в зданиях используется “витая" пара (120 Ом). Для соединения домов оптоволоконный кабель.

Для коммутации узлов могут применяться концентраторы (хабы), коммутаторы, а, в случае необходимости, маршрутизаторы.

В зданиях будет использоваться кабель стандарта 100BaseT4 UTP5 категории.

3. Расчет параметров и определение характеристик сети

Существует четыре основных правила корректной конфигурации Ethernet 802.3 :

1. количество узлов не более 1024

2. максимальная длина кабеля в сегменте определена соответствующей спецификацией

3. время двойного оборота сигнала (Path Delay Value, PDV ) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала

4. сокращение межкадрового интервала IPG (Path Variability Value, PVV) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала

Правила корректного построения сегментов сетей Fast Ethernet включают:

ограничения на максимальные длины сегментов, которые соединяют устройства - источники кадров (соединение DTE - DTE);

ограничения на максимальные длины сегментов, соединяющих устройства-источники кадров (DTE) с портом повторителя;

ограничения на общий максимальный диаметр сети;

ограничения на максимальное число повторителей и максимальную длину сегмента, соединяющего повторители.

Расчет первого здания:

1 - Свитч = 25 + 3 + 65 = 93м

2 - Маршрутизатор = 50 + 50 =100м

3 - Маршрутизатор = 3 + 3 + 35 = 41м

4 - Маршрутизатор = 15 + 3 = 18м

Свитч - Маршрутизатор = 35 м

В здании мы используем:

Кабель витая пара 100BaseT4 - 287 метра

Свитч - 1 штука

Маршрутизатор - 1 штука

Вилка RJ-45 - 10 штук

Сетевая карта - 4 штуки

Расчет второго здания:

5 - Маршрутизатор = 20м

6 - Свитч1 = 55 + 45 =100м

7 - Свитч3 = 100м

8 - Свитч3 = 100м

17 - Маршрутизатор = 3м

Свитч1 - Маршрутизатор = 75м

Свитч3 - Маршрутизатор = 3 + 3 = 6м

В здании мы используем:

Кабель витая пара 100BaseT4 = 404 метров

Свитч - 2 штуки

Маршрутизатор - 1 штука

Вилка RJ-45 - 14 штук

Сетевая карта - 5 штук

Расчет третьего здания:

9 - Маршрутизатор = 20 + 50 + 3 = 73м

10 - Маршрутизатор = 20 + 3 =23м

11 - Маршрутизатор = 25м

12 - Маршрутизатор = 10 + 50 = 60м

В здании мы используем:

Кабель витая пара 100BaseT4 - 181 метров

Маршрутизатор - 1 штука

Вилка RJ-45 - 8 штук

Сетевая карта - 4 штуки

Расчет четвертого здания:


13 - Маршрутизатор = 60 м

14 - Маршрутизатор = 10 + 3 + 3 +50 =66м

15 - Свитч = 3 + 3 +55 + 25 = 86м

16 - Свитч = 3 + 3 + 25 = 31м

Свитч - Маршрутизатор = 25 + 60 = 85м

В здании мы используем:

Кабель витая пара 100BaseT4 - 328 метра

Свитч - 1 штука

Маршрутизатор - 1 штука

Вилка RJ-45 - 10 штук

Сетевая карта - 4 штуки

Между зданиями используем оптоволоконный кабель категории 100BaseFX.



Расчет длины оптоволоконного кабеля между зданиями:

Учитывая расстояние между домами, расположение точек связи (маршрутизаторов) определим длину оптоволоконного кабеля, руководствуясь выше представленной схемой расположения домов:

S=90 + 140 + 100 + 10 = 340м

Вилка для оптоволоконного кабеля - 6 штук

Общая длина кабеля - 340м


Рис.2. Трехмерный план расположения рабочих станций и хабов

Разделим сеть на подсети (по строениям) c помощью маршрутизаторов. Назначим адреса узлам и маршрутизаторам. Определим маски подсети.

Узел/порт маршрутизатора IP-адрес Маска
1 узел: внешние порты: 192.168.0.130 192.168.0.131 внутренние порты: 192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4 IP адрес интерфейса: 192.168.0.5 192.168.0.6 192.168.0.7 192.168.0.8 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224
2 узел: внешние порты: 192.168.0.132 внутренние порты: 192.168.0.34 192.168.0.35 192.168.0.36 IP адрес интерфейса: 192.168.0.37 192.168.0.38 192.168.0.39 192.168.0.40
3 узел: внешние порты: 192.168.0.133 внутренние порты: 192.168.0.66 192.168.0.67 192.168.0.68 IP адрес интерфейса: 192.168.0.69 192.168.0.70 192.168.0.71 192.168.0.72 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224
4 узел: внешние порты: 192.168.0.134 192.168.0.135 внутренние порты: 192.168.0.96 192.168.0.97 192.168.0.98 192.168.0.99 IP адрес интерфейса: 192.168.0.100 192.168.0.101 192.168.0.102 192.168.0.103 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224 255.255.255.224

300 1200 Сетевые адаптеры SureCom 10/100Mbit 40 680 Маршрутизатор 3Com Router 5009 2700 10800 Кабель 100BaseT4 1,9 2280 Кабель 100BaseFX 7,6 2584 Вилка RJ-45 2,5 105 Вилка для оптоволоконного кабеля 14 84 Итого 17733

5. Расчет PDV

PDV для первого домена коллизий:

1 - Свитч - Маршрутизатор = (35 + 93) * 1.112 = 142,336 бт

Согласно заданию, время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 512 битовых интервала.

PDV для второго домена коллизий:

7 - Свитч3 - Маршрутизатор = (100 + 6) * 1.112 = 117,872 бт

Загрузка...