instargramm.ru

Типы статистических данных. Статистические данные и их описание

Статистические данные должны быть представлены так, чтобы ими можно было пользоваться. Существует 3 основных формы представления статистических данных:

1) текстовая – включение данных в текст;

2) табличная – представление данных в таблицах;

3) графическая – выражение данных в виде графиков.

Текстовая форма применяется при малом количестве цифровых данных.

Табличная форма применяется чаще всего, так как является более эффективной формой представления статистических данных. В отличие от математических таблиц, которые по начальным условиям позволяют получить тот или иной результат, статистические таблицы рассказывают языком цифр об изучаемых объектах.

Статистическая таблица – это система строк и столбцов, в которых в определенной последовательности и связи излагается статистическая информация о социально-экономических явлениях.

Таблица 2. Внешняя торговля РФ за 2000 – 2006 годы, млрд.долл.

Показатель

Внешнеторговый оборот

Сальдо торгового баланса

в том числе:

со странами дальнего зарубежья

сальдо торгового баланса

Например, в табл. 2 представлена информация о внешней торговле России, выражать которую в текстовой форме было бы неэффективным.

Различают подлежащее и сказуемое статистической таблицы. В подлежащем указывается характеризуемый объект – либо единицы совокупности, либо группы единиц, либо совокупность в целом. В сказуемом дается характеристика подлежащего, обычно в числовой форме. Обязателен заголовок таблицы, в котором указывается к какой категории и к какому времени относятся данные таблицы.

По характеру подлежащего статистические таблицы подразделяются на простые , групповые и комбинационные . В подлежащем простой таблицы объект изучения не подразделяется на группы, а дается либо перечень всех единиц совокупности, либо указывается совокупность в целом (например, табл. 11). В подлежащем групповой таблицы объект изучения подразделяется на группы по одному признаку, а в сказуемом указываются число единиц в группах (абсолютное или в процентах) и сводные показатели по группам (например, табл. 4). В подлежащем комбинационной таблицы совокупность подразделяется на группы не по одному, а по нескольким признакам (например, табл. 2).

При построении таблиц необходимо руководствоваться следующими общими правилами .

1. Подлежащее таблицы располагается в левой (реже – верхней) части, а сказуемое – в правой (реже – нижней).

2. Заголовки столбцов содержат названия показателей и их единицы измерения.

3. Итоговая строка завершает таблицу и располагается в ее конце, но иногда бывает первой: в этом случае во второй строке делается запись «в том числе», и последующие строки содержат составляющие итоговой строки.

4. Цифровые данные записываются с одной и той же степенью точности в пределах каждого столбца, при этом разряды чисел располагаются под разрядами, а целая часть отделяется от дробной запятой.

5. В таблице не должно быть пустых клеток: если данные равны нулю, то ставится знак «–» (прочерк); если данные не известны, то делается запись «сведений нет» или ставится знак «…» (троеточие). Если значение показателя не равно нулю, но первая значащая цифра появляется после принятой степени точности, то делается запись 0,0 (если, скажем, была принята степень точности 0,1).

Иногда статистические таблицы дополняются графиками, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графическая форма является самой эффективной формой представления данных с точки зрения их восприятия. С помощью графиков достигается наглядность характеристики структуры, динамики, взаимосвязи явлений, их сравнения.

Статистические графики – это условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем. Графическая форма облегчает рассмотрение статистических данных, делает их наглядными, выразительными, обозримыми. Однако графики имеют определенные ограничения: прежде всего, график не может включить столько данных, сколько может войти в таблицу; кроме того, на графике показываются всегда округленные данные – не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний недостаток – трудоемкость построения графиков. Он может быть преодолен использованием персонального компьютера (например, «Мастером диаграмм» из пакета Microsoft Office Excel ).

По способу построения графики делятся на диаграммы , картограммы и картодиаграммы .

Наиболее распространенным способом графического изображения данных являются диаграммы, которые бывают следующих видов: линейные, радиальные, точечные, плоскостные, объемные, фигурные. Вид диаграмм зависит от вида представляемых данных и задачи построения. В любом случае график обязательно сопровождается заголовком – над или под полем графика. В заголовке указывается, какой показатель изображен, по какой территории и за какое время.

Линейные графики используются для представления количественных переменных: характеристики вариации их значений, динамики, взаимосвязи между переменными. Вариация данных анализируется с помощью полигона распределения , кумуляты (кривой «меньше, чем») и огивы (кривой «больше, чем»). Полигон распределения рассматривается в теме 4 (напр., рис. 5.). Для построения кумуляты значения варьирующего признака откладываются по оси абсцисс, а на оси ординат помещаются накопленные итоги частот или частостей (от f1 до ∑f ). Для построения огивы на оси ординат помещаются накопленные итоги частот в обратном порядке (от ∑f до f1 ). Кумуляту и огиву по данным табл. 4. изобразим на рис. 1.

Рис. 1. Кумулята и огива распределения товаров по величине таможенной стоимости

Применение линейных графиков в анализе динамики рассматривается в теме 5 (напр., рис. 13), а использование их для анализа связей – в теме 6 (напр., рис.21). В теме 6 также рассмотрено использование точечных диаграмм (напр., рис. 20).

Линейные графики подразделяются на одномерные , используемые для представления данных по одной переменной, и двумерные – по двум переменным. Примером одномерного линейного графика является полигон распределения, а двумерного – линия регрессии (напр., рис. 21).

Иногда при больших изменениях показателя прибегают к логарифмической шкале. Например, если значения показателя изменяются от 1 до 1000, то это может вызвать затруднения при построении графика. В таких случаях переходят к логарифмам значений показателя, которые не будут столь сильно различаться: lg 1 = 0, lg 1000 = 3.

Среди плоскостных диаграмм по частоте использования выделяются столбиковые диаграммы (гистограммы), на которых показатель представляется в виде столбика, высота которого соответствует значению показателя (напр., рис. 4).

Пропорциональность площади той или иной геометрической фигуры величине показателя лежит в основе других видов плоскостных диаграмм: треугольных , квадратных , прямоугольных . Можно использовать и сравнение площадей круга – в этом случае задается радиус окружности.

Ленточная диаграмма представляет показатели в виде горизонтально вытянутых прямоугольников, а в остальном не отличается от столбиковой диаграммы.

Из плоскостных диаграмм часто используется секторная диаграмма , которая применяется для иллюстрации структуры изучаемой совокупности. Вся совокупность принимается за 100%, ей соответствует общая площадь круга, площади секторов соответствуют частям совокупности. Построим секторную диаграмму структуры внешней торговли РФ в 2006 году по данным табл. 2 (см. рис. 2). При использовании компьютерных программ секторные диаграммы строятся в объемном виде, то есть не в двух, а в трех плоскостях (см. рис. 3).

Рис. 2. Простая секторная диаграмма Рис. 3. Объемная секторная диаграмма

Фигурные (картинные) диаграммы усиливают наглядность изображения, так как включают рисунок изображаемого показателя, размер которого соответствует размеру показателя.

При построении графика одинаково важно все – правильный выбор графического изображения, пропорций, соблюдение правил оформления графиков. Подробнее эти вопросы освещаются в и .

Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений. Они показывают размещение изучаемого явления, его интенсивность на определенной территории – в республике, области, экономическом или административном округе и т.д.. Построение картограмм и картодиаграмм рассматривается в специальной литературе, например .

Основные статистические характеристики делят на две основные группы: меры центральной тенденции и характеристики вариации.

Центральную тенденцию выборки позволяют оценить такие статистические характеристики, как среднее арифметическое значение, мода, медиана.

Наиболее просто получаемой мерой центральной тенденции является мода. Мода (Мо) – это такое значение в множестве наблюдений, которое встречается наиболее часто. В совокупности значений (2, 6, 6, 8, 7, 33, 9, 9, 9, 10) модой является 9, потому что оно встречается чаще любого другого значения. В случае, когда все значения в группе встречаются одинаково часто, считают, что эта группа не имеет моды.

Когда два соседних значения в ранжированном ряду имеют одинаковую частоту и они больше частоты любого другого значения, мода есть среднее этих двух значений.

Если два несмежных значения в группе имеют равные частоты, и они больше частот любого значения, то существуют две моды (например, в совокупности значений 10, 11, 11, 11, 12, 13, 14, 14, 14, 17 модами являются 11 и 14); в таком случае группа измерений или оценок является бимодальной .

Наибольшей модой в группе называется единственное значение, которое удовлетворяет определению моды. Однако во всей группе может быть несколько меньших мод. Эти меньшие моды представляют собой локальные вершины распределения частот.

Медиана (Me) – середина ранжированного ряда результатов измерений. Если данные содержат четное число различных значений, то медиана есть точка, лежащая посередине между двумя центральными значениями, когда они упорядочены.

Среднее арифметическое значение для неупорядоченного ряда измерений вычисляют по формуле:

где . Например, для данных 4,1; 4,4; 4,5; 4,7; 4,8 вычислим :

.

Каждая из выше вычисленных мер центра является наиболее пригодной для использования в определенных условиях.

Мода вычисляется наиболее просто – ее можно определить на глаз. Более того, для очень больших групп данных это достаточно стабильная мера центра распределения.

Медиана занимает промежуточное положение между модой и средним с точки зрения ее вычисления. Эта мера получается особенно легко в случае ранжированных данных.

Среднее множество данных предполагает в основном арифметические операции.

На величину среднего влияют значения всех результатов. Медиана и мода не требуют для определения всех значений. Посмотрим, что произойдет со средним, медианой и модой, когда удвоится максимальное значение в следующем множестве:

Множество 1: 1, 3, 3, 5, 6, 7, 8 33/7 5 3

Множество 2: 1, 3, 3, 5, 6, 7, 16 41/7 5 3

На величину среднего особенно влияют результаты, которые называют “выбросами”, т.е. данные, находящиеся далеко от центра группы оценок.

Вычисление моды, медианы или среднего – чисто техническая процедура. Однако выбор из этих трех мер и их интерпретация зачастую требуют определенного размышления. В процессе выбора следует установить следующее:

– в малых группах мода может быть совершенно нестабильной. Например, мода группы: 1, 1, 1, 3, 5, 7, 7, 8 равна 1; но если одна из единиц превратится в нуль, а другая – в два, то мода будет равна 7;

– на медиану не влияют величины “больших” и “малых” значений. Например, в группе из 50 значений медиана не изменится, если наибольшее значение утроится;

– на величину среднего влияет каждое значение. Если одно какое-нибудь значение меняется на c единиц, изменится в том же направлении на c/n единиц;

– некоторые множества данных не имеют центральной тенденции, что часто вводит в заблуждение при вычислении только одной меры центральной тенденции. Особенно это справедливо для групп, имеющих более чем одну моду;

– когда считают, что группа данных является выборкой из большой симметричной группы, среднее выборки, вероятно, ближе к центру большой группы, чем медиана и мода.

Все средние характеристики дают общую характеристику ряда результатов измерений. На практике нас часто интересует, как сильно каждый результат отклоняется от среднего значения. Однако легко можно представить, что две группы результатов измерений имеют одинаковые средние, но различные значения измерений. Например, для ряда 3, 6, 3 – среднее значение = 4; для ряда 5, 2, 5 – также среднее значение = 4, несмотря на существенное различие этих рядов.

Поэтому средние характеристики всегда необходимо дополнять показателями вариации, или колеблемости.

К характеристикам вариации , или колеблемости , результатов измерений относят размах варьирования, дисперсию, среднее квадратическое отклонение, коэффициент вариации, стандартную ошибку средней арифметической.

Самой простой характеристикой вариации является размах варьирования . Его определяют как разность между наибольшим и наименьшим результатами измерений. Однако он улавливает только крайние отклонения, но не отражает отклонений всех результатов.

Чтобы дать обобщающую характеристику, можно вычислить отклонения от среднего результата. Например, для ряда 3, 6, 3 значения будут следующими: 3 – 4 = – 1; 6 – 4 = 2; 3 – 4 = – 1. Сумма этих отклонений (– 1) + 2 + (– 1) всегда равна 0. Чтобы избежать этого, значения каждого отклонения возводят в квадрат: (– 1) 2 + 2 2 + (– 1) 2 = 6.

Значение делает отклонения от средней более явственными: малые отклонения становятся еще меньше (0,5 2 =0,25), а большие – еще больше (5 2 = 25). Получившуюся сумму называют суммой квадратов отклонений . Разделив эту сумму на число измерений, получают средний квадрат отклонений, или дисперсию . Она обозначается s 2 и вычисляется по формуле:

.

Если число измерений не более 30, т.е. n ≤ 30, используется формула:

.

Величина n – 1 = k называется числом степеней свободы , под которым подразумевается число свободно варьирующих членов совокупности. Установлено, что при вычислении показателей вариации один член эмпирической совокупности всегда не имеет степени свободы.

Эти формулы применяются, когда результаты представлены неупорядоченной (обычной) выборкой.

Из характеристик колеблемости наиболее часто используется среднее квадратическое отклонение , которое определяется как положительное значение корня квадратного из значения дисперсии, т.е.:

.

Среднее квадратическое отклонение или стандартное отклонение характеризует степень отклонения результатов от среднего значения в абсолютных единицах и имеет те же единицы измерения, что и результаты измерения.

Однако для сравнения колеблемости двух и более совокупностей, имеющих различные единицы измерения, эта характеристика не пригодна.

Коэффициент вариации определяется как отношение среднего квадратического отклонения к среднему арифметическому, выраженное в процентах. Вычисляется он по формуле:

.

В спортивной практике колеблемость результатов измерений в зависимости от величины коэффициента вариации считают небольшой
(0 – 10 %), средней (11 – 20 %) и большой (V > 20 %).

Коэффициент вариации имеет большое значение в статистической обработке результатов измерений, т. к., будучи величиной относительной (измеряется в процентах), позволяет сравнивать между собой колеблемость результатов измерений, имеющих различные единицы измерения. Коэффициент вариации можно использовать лишь в том случае, если измерения выполнены в шкале отношений.

2.4.2. Анализ статистических данных в MS Excel. Инструменты анализа: описательная статистика, корреляция.

В состав электронных таблиц Microsoft Excel входит так называемый пакет анализа – набор инструментов, предназначенный для решения сложных статистических задач. Данный пакет производит анализ статистических данных с помощью макрофункций и позволяет, выполнив одно действие, получить на выходе большое количество результатов. В пакете анализа, имеющемся в Excel, среди прочих инструментов анализа имеется разделы «Описательная статистика» и «Корреляция».

Инструмент «Описательная статистика» позволяет нам получить значительный перечень рассчитанных статистических характеристик для большого количества числовых рядов. С помощью инструмента «Корреляция» мы получаем корреляционную матрицу, содержащую все возможные парные коэффициенты корреляции. Для k рядов будет получено k (k – 1)/2 коэффициентов корреляции.

Пакет анализа вызывается с помощью пункта меню Сервис – Анализ данных… Если этот пункт меню отсутствует, значит, пакет анализа не установлен. Для его установки надо вызвать пункт меню Сервис – Надстройки… и включить надстройку «Пакет анализа», ОК (см. рисунок 1).

Рисунок 1. Диалоговое окно включения/выключения надстроек

После включения надстройки «Пакет анализа» будет доступен пункт меню Сервис – Анализ данных… При его выборе появляется следующее диалоговое окно (рисунок 2).

Рисунок 2. Диалоговое окно выбора инструмента для анализа данных

После выбора инструмента «Описательная статистика» и нажатия ОК появится еще одно диалоговое окно (рисунок 3), требующее ввода входных данных и места вывода результатов. Здесь достаточно в поле «Входной интервал» ввести диапазон ячеек, содержащих исходные данные. Можно указать диапазон с заголовками столбцов, в этом случае потребуется включить флажок «Метки в первой строке». Для указания выходного интервала достаточно указать только левую верхнюю ячейку диапазона. Результаты вычисления автоматически займут требуемое количество строк и столбцов в таблице.

Рисунок 3. Диалоговое окно инструмента «Описательная статистика»

Рассмотрим работу инструмента анализа «Описательная статистика» на следующем примере. В процессе обследования группы школьников (n = 21) измерялись следующие показатели: рост, масса тела, динамометрия правой и левой руки, жизненная емкость легких, проба Штанге и проба Генчи. Результаты были занесены в таблицу (рисунок 4).

Для получения статистических характеристик воспользуемся пакетом анализа, инструментом «Описательная статистика». В поле «Входной интервал» занесем диапазон ячеек В1:Н22. Так как выделенный входной интервал содержит заголовки столбцов, включаем флажок «Метки в первой строке». Для удобства работы в качестве места выхода результата выбираем «Новый рабочий лист». В качестве выводимых данных отметим флажками «Итоговая статистика» и «Уровень надежности: 95 %». Последний флажок позволит вывести параметры доверительного интервала с доверительной вероятностью 0,95. Полученный результат после небольшого форматирования будет выглядеть так, как показано на рисунке 5.

Рисунок 4. Результаты обследования группы школьников

Рисунок 5. Результат работы инструмента «Описательная статистика»

После выбора инструмента «Корреляция» и нажатия ОК в диалоговом окне «Анализ данных» (рисунки 2, 6) появится еще одно диалоговое окно (рисунок 7), требующее ввода входных данных и места вывода результатов. Здесь достаточно в поле «Входной интервал» ввести диапазон ячеек, содержащих исходные данные. Можно указать диапазон с заголовками столбцов, в этом случае потребуется включить флажок «Метки в первой строке». Для указания выходного интервала достаточо указать только левую верхнюю ячейку диапазона. Результаты вычисления автоматически займут требуемое количество строк и столбцов в таблице.

Рисунок 6. Диалоговое окно выбора инструмента для анализа данных

Рисунок 7. Диалоговое окно инструмента «Корреляция»

Рассмотрим работу инструмента анализа «Корреляция» на примере, представленном на рисунке 4.

Для получения корреляционной матрицы воспользуемся пакетом анализа, инструментом «Корреляция». В поле «Входной интервал» занесем диапазон ячеек В1:Н22. Так как выделенный входной интервал содержит заголовки столбцов, включаем флажок «Метки в первой строке». Для удобства работы в качестве места выхода результата выбираем «Новый рабочий лист». Полученный результат после небольшого форматирования будет выглядеть так, как показано на рисунке 8.

Рисунок 8. Корреляционная матрица

Таким образом, путем выполнения несложных операций мы получаем большое количество результатов вычислений. Стоит отметить, что хотя информационные технологии открывают перед исследователем возможности получения огромного количества информации для анализа, отбор наиболее информативных результатов, окончательная интерпретация и формулировка выводов – работа самого исследователя.

Основные понятия корреляционного анализа экспериментальных данных. Оценка коэффициента корреляции по экспериментальным данным.

В спортивных исследованиях между изучаемыми показателями часто обнаруживается взаимосвязь. Вид ее бывает различным. Например, определение ускорения по известным данным скорости, второй закон Ньютона и другие характеризуют так называемую функциональную зависимость, или взаимосвязь, при которой каждому значению одного показателя соответствует строго определенное значение другого.

К другому виду взаимосвязи относят, например, зависимость веса от длины тела. Одному значению длины тела может соответствовать несколько значений веса и наоборот. В таких случаях, когда одному значению одного показателя соответствует несколько значений другого, взаимосвязь называют статистической .

Изучению статистической взаимосвязи между различными показателями в спортивных исследованиях уделяют большое внимание, поскольку это позволяет вскрыть некоторые закономерности и в дальнейшем описать их как словесно, так и математически с целью использования в практической работе тренера и педагога.

Среди статистических взаимосвязей наиболее важны корреляционные . Корреляция – это статистическая зависимость между случайными величинами, при которой изменение одной из случайных величин приводит к изменению математического ожидания (среднего значения) другой. Например, толкание ядра 3 кг и 5 кг. Улучшение результатов толкания ядра 3 кг вызывает улучшение (в среднем) результата в толкании ядра весом 5 кг.

Статистический метод, который используется для исследования взаимосвязей, называется корреляционным анализом . Основной задачей его является определение формы, тесноты и направленности взаимосвязи изучаемых показателей. Корреляционный анализ позволяет исследовать только статистическую взаимосвязь. Он широко используется в теории тестов для оценки их надежности и информативности. Различные шкалы измерений требуют разных вариантов корреляционного анализа.

Величина коэффициента взаимосвязи рассчитывается с учетом шкалы, использованной для измерений.

Для оценки взаимосвязи, когда измерения производят в шкале отношений или интервалов и форма взаимосвязи линейная, используется коэффициент корреляции Бравэ-Пирсона (коэффициенты корреляции для других шкал измерения в данном пособии не рассматриваются). Обозначается он латинской буквой – r. Вычисление значения r чаще всего производят по формуле:

,

где и – средние арифметические значения показателей x и y, и – средние квадратические отклонения, n – число измерений (испытуемых).

В некоторых случаях тесноту взаимосвязи определяют на основании коэффициента детерминации D, который вычисляется по формуле:

.

Этот коэффициент определяет часть общей вариации одного показателя, которая объясняется вариацией другого показателя. Например, коэффициент корреляции r = –0,677 (между результатами в беге на 30 м с ходу и тройном прыжке с места). Коэффициент детерминации равен:

Следовательно, 45,8 % рассеяния спортивного результата в тройном прыжке объясняется изменением результатов в беге на 30 м. Иными словами, на оба исследуемых признака действуют общие факторы, вызывающие варьирование этих признаков, и доля общих факторов составляет 45,8%. Остальные 100% – 45,8% = 54,2% приходятся на долю факторов, действующих на исследуемые признаки избирательно.

Оценить статистическую достоверность коэффициента корреляции – это значит определить, существует или нет линейная корреляционная связь между генеральными совокупностями или, что то же, установить, существенно или несущественно отличается от нуля коэффициент корреляции между выборками. Эта задача может быть решена с помощью таблиц критических точек распределения коэффициента корреляции в следующем порядке:

1. Выдвигаются статистические гипотезы. Гипотеза Н 0 предполагает отсутствие статистически значимой взаимосвязи между исследуемыми показателями (r ген =0). Гипотеза Н 1 предполагает, что существует статистически достоверная взаимосвязь между показателями (r ген >0).

2. Рассчитывается наблюдаемое значение коэффициента корреляции r набл .

3. Находится по таблице критическое значение коэффициента корреляции r крит в зависимости от объема выборки n , уровня значимости a и вида критической области (односторонняя или двусторонняя).

3. Сравнивается r набл и r крит .

Если r набл < r крит – статистически недостоверным (незначимым). Принимается гипотеза Н 0 Если r набл r крит , коэффициент корреляции считается статистически достоверным (значимым). Принимается гипотеза Н 1 .

Статистика- наука, изучающая количественную сторону массовых социально- экономических явлений и процессов, в неразрывном единстве с их качественной стороной в конкретных условиях места и времени.

В естественных науках понятие «статистика» означает анализ массовых явлений, основанных на применении методов теории вероятности.

Статистика разрабатывает специальную методологию исследования и обработки материалов: массовые статистические наблюдения, метод группировок, средних величин, индексов, балансовый метод, метод графических изображений.

Методологическими особенностями является изучение: массовости явлений, качественно однородных признаков того или иного явления в динамике.

Статистика включает ряд разделов, среди которых: общая теория статистики, экономическая статистика, отраслевые статистики- промышленная, сельского хозяйства, транспорта, медицинская.

11. Группы показателей для оценки состояния здоровья населения.

Здоровье населения характеризуется тремя группами основных показателей:

А) медико-демографические –отражают состояние и динамику демографических процессов:

    Статистика населения (плотность, размещение, социальный состав, состав по полу и возрасту, грамотность, образование, национальность, язык, культура.)

    Динамика населения (механическая эмиграция и иммиграция, естественная рождаемость, смертность, естественный прирост.)

    Семейное состояние (коэффициент брачности, разводов, средняя продолжительность брака.)

    Процессы воспроизводства (суммарная плодовитость, брутто-коэффициент и нетто-коэффициент.)

    Средняя ожидаемая продолжительность жизни

    Смертность (структура смертности, показатели смертности в зависимости от причины, характера заболеваемости и возраста.)

Б) показатели заболеваемости и травматизма (первичная заболеваемость, распространенность, накопленная заболеваемость, патологическая пораженность, индекс здоровья, летальность, травматизм, инвалидность.)

В) показатели физического развития:

    Антропометрические (рост, масса тела, окружность грудной клетки, головы, плеча, предплечья, голени, бедра)

    Физиометрические (жизненная ёмкость легких, мышечная сила кистей рук, становая сила)

    Соматоскопические (телосложение, развитие мускулатуры, степень упитанности, форма грудной клетки, форма голеней, стоп, выраженность вторичных половых признаков.)

    Медицинская статистика, ее разделы, задачи. Роль статистического метода в изучении здоровья населения и деятельности системы здравоохранения.

Медицинская (санитарная) статистика - изу­чает количественную сторону явлений и процессов, связанных с ме­дициной, гигиеной и здравоохранением.

Выделяют 3 раздела медицинской статистики:

1. Статистика здоровья населения - изучает состояние здоровья населения в целом или его отдельных групп (путем сбора и статис­тического анализа данных о численности и составе населения, его воспроизводстве, о естественном движении, физическом развитии, распространенности различных заболеваний, продолжительности жиз­ни и т.д.). Оценка показателей здоровья проводится в сопоставлении с общепринятыми оценочными уровнями и уровнями, полученными по различным регионам и в динамике.

2. Статистика здравоохранения - решает вопросы сбора, обработ­ки и анализа информации о сети учреждений здравоохранения (их размещении, оснащении, деятельности) и кадрах (о численности врачей, среднего и младшего медицинского персонала, о распределе­нии их по специальностям, стажу работы, о их переподготовке и т.д.). При анализе деятельности лечебно-профилактических учрежде­ний осуществляется сопоставление полученных данных с нормативны­ми уровнями, а также уровнями, полученными по другим регионам и в динамике.

3. Клиническая статистика - это использование статистических методов при обработке результатов клинических, экспериментальных и лабораторных исследований; она позволяет с количественной точ­ки зрения оценить достоверность результатов исследования и ре­шить ряд других задач (определение объема необходимого числа наблюдений при выборочном исследовании, сформировать эксперимен­тальную и контрольную группы, изучить наличие корреляционных и регрессионных связей, устранить качественную неоднородность групп и т. д.).

Задачами медицинской статистики являются:

1) изучение состояния здоровья населения, анализ количественных характеристик общественного здоровья.

2) выявление связей между показателями здоровья и различными фак­торами природной и социальной среды, оценка влияния этих фак­торов на уровни здоровья населения.

3) изучение материально- технической базы здравоохранения.

4) анализ деятельности лечебно-профилактических учреждений.

5) оценка эффективности (медицинской, социальной, экономической) проводимых лечебных, профилактических, противоэпидемических мероприятий и здравоохранения в целом.

6) использование статистических методов при проведении клинических и экспериментальных медико-биологических исследований.

Медицинская статистика является методом социальной диагности­ки, поскольку она позволяет дать оценку состояния здоровья насе­ления страны, региона и на этой основе разработать меры, направ­ленные на улучшение общественного здоровья. Важнейшим принципом статистики является применение ее для изу­чения не отдельных, единичных, а массовых явлений , с целью выявления их общих закономерностей. Эти закономерности проявляются, как правило, в массе наблюдений, то есть при изучении статистической совокупности.

В медицине статистика - ведущий метод, т.к.:

1) позволяет количественно измерить показатели здоровья населения и показатели деятельности медицинских учреждений

2) определяет силу влияния различных факторов на здоровье населения

3) определяет эффективность лечения и оздоровительных мероприятий

4) позволяет оценить динамику показателей здоровья и позволяет прогнозировать их

5) позволяет получить необходимые данные для разработки норм и нормативов здравоохранения.

    Статистическая совокупность. Определение, виды, свойства. Особенности исследования статистической совокупности.

Объектом любого статистического исследования является статис­тическая совокупность.

Статистическая совокупность - группа, состоящая из множества относительно однородных элементов, взятых вместе в известных гра­ницах пространства и времени и обладающих признаками сходства и различия.

Свойства статистической совокупности : 1) однородность единиц наблюдения 2) определенные границы пространства и времени изучаемого явления

Объектом статистического исследования в медицине и здравоохранении могут быть различные контингенты населения (население в целой или его отдельные группы, больные, умершие, родившиеся), лечебно-профилактические учреждения и др.

Различают два вида статистической совокупности :

а) генеральная совокупность

б) выборочная совокупность

1. выборочная совокупность формируется таким образом, чтобы обес­печить равную возможность для всех элементов исходной совокупнос­ти быть охваченными наблюдением.

2. выборочная совокупность должна быть репрезентативной (представительной), точно и полно отра­жать явление, т.е. давать такое же представление о явлении, как если бы изучалась вся генеральная совокупность.

Выборочная совокупность

1) должна быть репрезентативной, точно и полно отражать явление, т.е. давать такое же представление о явлении как если бы изучалась вся генеральная совокупность, для этого она должна:

а. быть достаточной по численности

б. обладать основными чертами генеральной совокупности (в отобранной части должны быть представлены все элементы в таком же соотношении, как и в генеральной)

2) при ее формировании должен соблюдаться

1) случайный отбор - отбор единиц наблюдения путем жеребьевки с помощью таблицы случайных чисел и т.д. При этом для каждой единицы обеспечивается равная возможность попасть в выборку.

2) механический отбор - единицы генеральной совокупности, последовательно расположенные по какому-либо признаку (по алфавиту, по датам обращения к врачу и т.д.), разбиваются на равные части; из каждой части в заранее обусловленном порядке отбирают каждую 5, 10 или n-ую единицу наблюдения таким образом, чтобы обеспечить необходимый объем выборки.

3) типический (типологический) отбор - предполагает обязательное предварительное расчленение генеральной совокупности на отдельные качественно однородные группы (типы) с последующей выборкой единиц наблюдения из каждой группы по принипам случайного или механического отбора.

4) серийный (гнездный, гнездовой) отбор - предполагает выборку из генеральной совокупности не отдельных единиц, а целых серий (организованной совокупности единиц наблюдений, например, организаций, районов и т.д.)

5) комбинированные способы - сочетание различных способов формирования выборочной.

    Выборочная совокупность, требования, предъявляемые к ней. Принципы и способы формирования выборочной совокупности.

Различают два вида статистической совокупности :

а) генеральная совокупность - совокупность, состоящая из всех единиц наблюдения, которые могут быть к ней отнесены в соответствии с целью исследования. При изучении общественного здоровья генеральная совокупность часто рассматривается в пределах конкретных территориальных гра­ниц или может ограничиваться другими признаками (полом, возрас­том и др.) в зависимости от цели исследования.

б) выборочная совокупность - часть генеральной, отобранная спе­циальным (выборочным) методом и предназначенная для характерис­тики генеральной совокупности.

Особенности проведения статистического исследования на выборочной совокупности:

1. выборочная совокупность формируется таким образом, чтобы обес­печить равную возможность для всех элементов исходной совокупнос­ти быть охваченными наблюдением.

2. выборочная совокупность должна быть репрезентативной (представительной), точно и полно отра­жать явление, т.е. давать такое же представление о явлении, как если бы изучалась вся генеральная совокупность.

Выборочная совокупность - часть генеральной совокупности, отобранная спе­циальным (выборочным) методом и предназначенная для характерис­тики генеральной совокупности.

Требования, предъявляемые к выборочной совокупности:

1) должна быть репрезентативной, точно и полно отражать явление, т.е. давать такое же представление о явлении как если бы изучалась вся генеральная совокупность, для этого она должна:

а. быть достаточной по численности

б. обладать основными чертами генеральной совокупности (в отобранной части должны быть представлены все элементы в таком же соотношении, как и в генеральной)

2) при ее формировании должен соблюдаться основной принцип формирования выборочной совокупности : равная возможность для каждой единицы наблюдения попасть в исследование.

Способы формирования статистической совокупности:

1) случайный отбор - отбор единиц наблюдения путем жеребьевки с помощью таблицы случайных чисел и т.д. При этом для каждой единицы обеспечивается равная возможность попасть в выборку.

2) механический отбор - единицы генеральной совокупности, последовательно расположенные по какому-либо признаку (по алфавиту, по датам обращения к врачу и т.д.), разбиваются на равные части; из каждой части в заранее обусловленном порядке отбирают каждую 5, 10 или n-ую единицу наблюдения таким образом, чтобы обеспечить необходимый объем выборки.

3) типический (типологический) отбор - предполагает обязательное предварительное расчленение генеральной совокупности на отдельные качественно однородные группы (типы) с последующей выборкой единиц наблюдения из каждой группы по принипам случайного или механического отбора.

4) серийный (гнездный, гнездовой) отбор - предполагает выборку из генеральной совокупности не отдельных единиц, а целых серий (организованной совокупности единиц наблюдений, например, организаций, районов и т.д.)

5) комбинированные способы - сочетание различных способов формирования выборочной.

"

Понятие "статистика" происходит от латинского слова "status", которое в переводе означает - положение, состояние, порядок явлений.

Развитие политической арифметики (Англия) и государствоведения

(Германия) привело к появлению науки статистики.

В научный оборот термин "статистика" введен математиками Геттингенского универ-ситета в 18 веке.(Готфрид Ахенваль (1719-1772)).

В настоящее время существует около 150 определений статистики как научной дисциплины. Одно из лучших определений статистики дал австрийский математик Абрахам Вальд: « Статистика - это совокупность методов, которые дают нам возможность принимать оптимальные решения в условиях неопределенности».

Из различных определений статистики для практической медицины наиболее применимо следующее:

"Статистика - это наука о сборе, классификации и количественной оценке данных с целью получения достоверных выводов, прогнозов и решений".

Статистика изучает случайные массовые явления. Массовые явления - это явления, которые встречаются в больших количествах, но отличаются друг от друга величиной определенного признака. Чем больше количество объектов взято для исследования, тем достовернее статистические выводы.

Статистика состоит из теоретической (общей) статистики и прикладной

(экономической, социальной, отраслевой) статистики.

К отраслевым статистикам относится метеорологическая (статистика прогноза погоды), транспортная, экономическая, биологическая, медицинская.

Теоретическую статистику делят на описательную (дескриптивную) и аналитическую (индуктивную).

Описательная статистика - это статистика сбора общих данных. Она представляет собой совокупность методов сбора, группировки, классификации исходных данных и представлении их в удобном, для последующей обработки, виде (таблицы, графики).

Аналитическая статистика - это статистика выводов и прогнозов на основе математической обработки результатов, предоставленных описательной статистикой. Она включает в себя методы получения различных статистических заключений и выводов с целью их практического применения.

Медицинская статистика - это отраслевая статистика, комплекс методов прикладной статистики, которые применяются в научной, практической медицине и здравоохранении.

Основные задачи медицинской статистики:

ü статистика рождаемости и смертности;

ü статистика заболеваемости;

ü статистика деятельности учреждений здравоохранения.

Вместе описательная и аналитическая статистики решают следующую задачу:

ü сбор данных и описание их в удобном для статистической обработки виде;

ü обработка результатов методами теоретической (общей) статистики;

ü анализ полученных результатов, прогнозирование, выработка оптимальных решений.

2. ОСНОВНЫЕ ПОНЯТИЯ ОПИСАТЕЛЬНОЙ СТАТИСТИКИ

И ИХ ХАРАКТЕРИСТИКА.

К основным понятиям описательной статистики относятся:

ü статистическая совокупность (генеральная и выборочная);

ü объем совокупности;

ü статистический вариант;

ü статистический признак;

ü статистическая частота (абсолютная частота);

ü частость (относительная частота).

Статистическая совокупность - это множество объектов, объединенных по какому-либо признаку для статистического изучения.

Виды совокупностей:

  1. Генеральная совокупность (конечная или бесконечная).
  2. Выборочная совокупность (выборка).

Генеральная совокупность - это совокупность всех объектов выбранного для исследования статистического множества.

Конечная генеральная совокупность - статистическая совокупность, в которой количество изучаемых объектов с данным признаком ограничено.

Пример: количество студентов в академии, жителей в городе, число измерений в опытах.

Бесконечная генеральная совокупность - это статистическая совокупность, в которой число объектов равно бесконечности. Используется в теоретических расчетах как математическая абстракция.

Выборочная совокупность (выборка) - это часть генеральной совокупности, взятая для статического изучения.

Объем совокупности - это количество объектов, входящих в совокупность.

Объем генеральной совокупности обозначается символом N , а выборочной - n .

Статистический вариант - это объект совокупности, отдельное наблюдение или измерение.

Варианты обозначаются латинскими буквами x, y, z c подстрочными индексами, указывающими номер варианты.

Пример: х 1 - объект или измерение номер один,

х 2 - объект или измерение номер два и т.д.

Вариант без указания номера называется обобщенный вариант и обозначается латинской буквой с подстрочным буквенным индексом, например, x i .

Варианты (объекты) статистической совокупности характеризуются различными признаками, в том числе теми, на основе которых они объединены в совокупность.

Признак, который меняет свое значение от одного объекта к другому, называется варьирующим признаком , а само явление называется вариация .

Качественные признаки - это признаки, не имеющие количественного выражения. Это неизмеряемые признаки.

Пример: цвет, вкус, запах.

Количественные признаки - это измеряемые признаки, выражаемые определенным числом.

Пример: вес, длина, плотность, температура.

Дискретные количественные признаки - это количественные признаки, которые выражаются целыми числами.

Пример: число студентов в группе, пассажиров в автобусе, лепестков на цветке.

Непрерывные количественные признаки - это количественные признаки, которые выражаются как целыми, так и дробными числами.

Пример: вес арбуза 7 кг, вес дыни 1.7 кг.

Интервальный признак - это количественный признак, числовое значение которого лежит в определенных границах, называемых интервалами.

Пример: при измерении роста студентов, можно выделить интервальные группы 160 - 169 см, 170 - 179 см, 180 - 190 см.

Частота встречаемости (абсолютная частота) - число, показывающее, сколько раз объект с данным числовым значением признака встречается в совокупности или ее интервале.

Абсолютною частоту обозначают символом n i (µ i).

Сумма всех абсолютных частот равна объему совокупности N, для которой подсчитываются частоты: ∑n i = N

Пример: число лиц мужского и женского пола в группе должно быть равно в сумме количеству студентов в этой группе.

Частость (относительная частота) - число, равное отношению абсолютной частоты к объему совокупности.

Частость обозначают символом f и вычисляют по формуле:

в долях единицы: f i = ,

в процентах: f i = 100%

Здесь n i - абсолютная частота, N - объем совокупности, равный сумме всех абсолютных частот.

Сумма всех относительных частот равна 1: ∑f i = 1

Пример: в студенческой группе из пятнадцати человек (объем совокупности N =15) 12 студенток (абсолютная частота n 1 =12) и 3 студента (абсолютная частота n 2 =3). Частость f 1 будет равна 12/15, а частость f 2 =3/15. При этом сумма частостей или относительных частот равна единице.

В статистике относительные частоты или частости называют весами.

3. РЯДЫ РАСПРЕДЕЛЕНИЯ, ИХ ВИДЫ И СПОСОБЫ ПРЕДСТАВЛЕНИЯ.

Ряд распределения - это последовательность чисел с указанием качественного или количественного значения признака и частоты его встречаемости.

Виды рядов распределения классифицируются по разным принципам.

По степени упорядоченности ряды делят на:

ü неупорядоченные

ü упорядоченные

Неупорядоченный ряд - это такой ряд, в котором значения признака записаны в порядке поступления вариантов при исследовании.

Пример: При исследовании роста группы студентов были записаны его значения в см (175,170,168,173,179).

Упорядоченный ряд - это ряд, полученный из неупорядоченного в котором значения признака перезаписаны в порядке возрастания или убывания. Упорядоченный ряд называется ранжированным, а процедура ранжирования

(упорядочивания) называется сортировкой.

Пример: (Рост 168,170,173,175,179)

По виду признака ряды распределения делятся на:

ü атрибутивные

ü вариационные.

Атрибутивный ряд - это ряд, составленный на основе качественного признака.

Вариационный ряд - это ряд, составленный на основе количественного признака.

Вариационные ряды подразделяются на дискретные, непрерывные и интервальные.

Вариационные дискретные, непрерывные и интегральные ряды названы по соответствующему признаку, который лежит в основе составления ряда. Например, ряд по размеру обуви является дискретным по массе тела - непрерывным.

Способы представления рядов в практической и научной медицине делятся на три группы:

  1. Табличное представление;
  2. Аналитическое представление (в виде формулы);
  3. Графическое представление.
Загрузка...