instargramm.ru

Рассчитать пропущенные в таблице истинности значения. I

Продолжительность урока: 45 мин

Тип урока: комбинированный:

  • проверка знаний – устная работа;
  • новый материал – лекция;
  • закрепление – практические упражнения;
  • проверка знаний – задания для самостоятельной работы.

Цели урока:

  • дать понятие таблицы истинности;
  • закрепление материала предыдущего урока “Алгебра высказываний”;
  • использование информационных технологий;
  • привитие навыка самостоятельного поиска нового материала;
  • развитие любознательности, инициативы;
  • воспитание информационной культуры.

План урока:

  1. Организационный момент (2 мин).
  2. Повторение материала предыдущего урока (устный опрос) (4 мин).
  3. Объяснение нового материала (12 мин).
  4. Закрепление
  • разбор примера (5 мин);
  • практические упражнения (10 мин);
  • задания для самостоятельной работы (10 мин).
  • Обобщение урока, домашнее задание (2 мин).
  • Оборудование и программный материал:

    • белая доска;
    • мультимедийный проектор;
    • компьютеры;
    • редактор презентаций MS PowerPoint 2003;
    • раздаточный справочный материал “Таблицы истинности”;
    • демонстрация презентации “Таблицы истинности”.

    Ход урока

    I. Организационный момент

    Мы продолжаем изучение темы “Основы логики”. На предыдущих уроках мы увидели, что логика достаточно крепко связана с нашей повседневной жизнью, а также увидели, что почти любое высказывание можно записать в виде формулы.

    II. Повторение материала предыдущего урока

    Давайте вспомним основные определения и понятия:

    Вопрос Ответ
    1. Какое предложение является высказыванием? Повествовательное предложение, в котором что-либо утверждается или отрицается
    2. На какие виды делятся высказывания по своей структуре? Простые и сложные
    3. Истинность каких высказываний является договорной? Простых
    4. Истинность каких высказываний вычисляется? Сложных
    5. Как обозначаются простые высказывания в алгебре высказываний? Логическими переменными
    6. Как обозначается истинность таких высказываний? 1 и 0
    7. Что связывает переменные в формулах алгебры высказываний? Логические операции
    8. Перечислите их. Инверсия (отрицание)

    Конъюнкция (умножение)

    Дизъюнкция (сложение)

    Импликация (следование)

    Эквиваленция (равносильность)

    9. Определите, соответствует ли формула сложному высказыванию. Назовите простые высказывания. Определите причину несоответствия. (Задание на экране) Нет, неправильно поставлен знак
    10. Определите, соответствует ли формула сложному высказыванию. Назовите простые высказывания. Определите причину несоответствия. (Задание на экране) Да

    III. Объяснение нового материала

    Последние два примера относятся к сложным высказываниям. Как же определить истинность сложных высказываний?

    Мы говорили, что она вычисляется. Для этого в логике существуют таблицы для вычисления истинности составных (сложных) высказываний. Они называются таблицами истинности.

    Итак, тема урока ТАБЛИЦЫ ИСТИННОСТИ.

    3.1) Определение. Таблица истинности – это таблица, показывающая истинность сложного высказывания при всех возможных значениях входящих переменных (Рисунок 1).

    3.2) Разберем подробнее каждую логическую операцию в соответствии с ее определением:

    1. Инверсия (отрицание) – это логическая операция, которая каждому простому высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

    Эта операция относится только к одной переменной, поэтому для нее отведено только две строки, т.к. одна переменная может иметь одно из двух значений: 0 или 1.

    2. Конъюнкция (умножение)– это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны.

    Легко увидеть, что данная таблица действительно похожа на таблицу умножения.

    3. Дизъюнкция (сложение) – это логическая операция, которая каждым двум простым высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.

    Можно убедиться, что таблица похожа на таблицу сложения кроме последнего действия. В двоичной системе счисления 1 + 1 = 10, в десятичной – 1 + 1 = 2. В логике значения переменной 2 невозможно, рассмотрим 10 с точки зрения логики: 1 – истинно, 0 – ложно, т.о. 10 – истинно и ложно одновременно, чего быть не может, поэтому последнее действие строго опирается на определение.

    4. Импликация (следование) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся ложным тогда и только тогда, когда условие истинное, а следствие ложно.

    5. Эквиваленция (равносильность) – это логическая операция, ставящая в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания одновременно истинны или ложны.

    Последние две операции были разобраны нами на предыдущем уроке.

    3.3) Разберем алгоритм составления таблицы истинности для сложного высказывания:

    3.4) Рассмотрим пример составления таблицы истинности для сложного высказывания:

    Пример. Построить таблицу истинности для формулы: А U В -> ¬А U С.

    Решение (Рисунок 2)

    Из примера видно, что таблицей истинности является не все решение, а только последнее действие (столбец, выделенный красным цветом).

    IV. Закрепление.

    Для закрепления материала вам предлагается решить самостоятельно примеры под буквами а, б, в, дополнительно г–ж (Рисунок 3).

    V. Домашнее задание, обобщение материала.

    Домашнее задание дано вам также на экране монитора (Рисунок 4)

    Обобщение материала: сегодня на уроке мы научились определять истинность составных высказываний, но больше с математической точки зрения, так как вам были даны не сами высказывания, а формулы, отображающие их. На следующих уроках мы закрепим эти умения и постараемся их применить к решению логических задач.

    Задание 1 #10050

    \((x \wedge y) \vee (x \wedge \overline y) \vee (y\wedge z) \vee (z \wedge x)\)

    Составьте её таблицу истинности. В качестве ответа введите количество наборов \((x,\) \(y,\) \(z),\) при которых функция равна 1.

    1. Упростим \((x \wedge y) \vee (x \wedge \overline y).\)

    По закону дистрибутивности \((y \wedge x) \vee (x \wedge \overline y)\) = \(x \wedge (y \vee \overline y).\) \(y \vee \overline y = 1\) (если \(y = 0,\) то \(\overline y \vee y = 1 \vee 0 = 1,\) если \(y = 1,\) то \(\overline y \vee y = 0 \vee 1 = 1).\) Тогда \(x \wedge (y \vee \overline y) = x \wedge 1 = x .\)

    2. Упростим \((y\wedge z) \vee (z \wedge x).\) По закону дистрибутивности \((y\wedge z) \vee (z \wedge x) = z \wedge (y \vee x).\)

    3. Получим: \((x \wedge y) \vee (x \wedge \overline y) \vee (y\wedge z) \vee (z \wedge x) = x \vee z \wedge (y \vee x).\)

    4. В таблице истинности содержится 8 строчек (строк всегда \(2^n,\) где \(n\) - количество переменных). В нашем случае переменных 3.

    5. Заполним таблицу истинности.

    \[\begin{array}{|c|c|c|c|c|c|c|} \hline x & y & z & y \vee x & z \wedge (y \vee x) & F = x \vee z \wedge (y \vee x) \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}\]

    Так как дизъюнкция \(x \vee z \wedge (y \vee x)\) истинна, если истинно хотя бы одно из входящих в нее высказываний, то для \(x = 1\) \(F = 1\) при любых \(y\) и \(z\) (строки 5-8 в таблице истинности).

    Рассмотрим случай, когда \(x = 0.\) Тогда значение функции будет зависить от значения \(z \wedge (y \vee x).\) Если \(z \wedge (y \vee x)\) истинна, то и \(F\) истинна, если ложна, то \(F\) ложна. Рассмотрим случай, когда \(F = 1.\) Конъюнкция \((z \wedge (y \vee x))\) истинна, если все входящие в нее высказывания истинны, то есть \(y \vee x = 1\) и \(z = 1.\) \(x = 0,\) значит, \(y \vee x = 1,\) когда \(y = 1\) (строка 4).

    Если же одно из высказываний, входящих в конъюнкцию, ложно, то вся конъюнкция ложна. Если \(x = 0\) и \(y = 0,\) то \(y \vee x = 0.\) Тогда \(z \wedge (x \vee y) = 0\) при любом \(z\) (строки 1-2). Так как \(x = 0,\) а второе высказывание, входящее в дизъюнкцию \((z \wedge (x \vee y)),\) тоже ложно, то и вся функция ложна. Если \(x = 0\) и \(y = 1,\) то \(y \vee x = 1.\) Если \(z = 0,\) \(z \wedge (y \vee x) = 0.\) Тогда \(F = 0\) (строка 3). Случай, когда \(z = 1,\) \(y = 1,\) \(x = 0,\) был рассмотрен в предыдущем абзаце.

    Мы построили таблицу истинности. Видим, что в ней есть 5 наборов, при которых \(F = 1.\) Поэтому ответ: 5.

    Ответ: 5

    Задание 2 #10051

    Логическая функция \(F\) задаётся выражением:

    \((x \wedge \overline y \wedge z) \vee (x \rightarrow y)\)

    Составьте её таблицу истинности. В качестве ответа введите количество наборов \((x,\) \(y,\) \(z),\) при которых функция равна 0.

    \[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & y & z & \overline y & x\wedge \overline y & x \wedge \overline y \wedge z & \overline x & \overline x \vee y & x \wedge \overline y \wedge z \vee \overline x \vee y \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\\ \hline 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1\\ \hline 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1\\ \hline 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1\\ \hline \end{array}\]

    1. \(x \rightarrow y\) = \(\overline x \vee y.\)

    2. Заметим, что при \(y = 1\) \(F = 1,\) так как дизъюнкция истинна, если истинно хотя бы одно выражение, входящее в нее (строки 3-4, 7-8 в таблице истинности). Аналогично при \(\overline x = 1,\) то есть при \(x = 0,\) \(F = 1\) (строки 1-4).

    3. При \(x = 1\) и \(y = 0\) \(\overline x \vee y = 0,\) \(x \wedge \overline y = 1.\) При \(z = 1\) \(x \wedge \overline y \wedge z = 1\) и \(F = 1,\) так как истинно одно из выражений (строка 6), а при \(z = 0\) \(x \wedge \overline y \wedge z = 0\) и \(F = 0,\) так как оба выражения, входящие в дизъюнкцию, ложны (строка 5).

    По построенной таблице истинности видим, что для одного набора \((x,\) \(y,\) \(z)\) \(F = 0.\)

    Ответ: 1

    Задание 3 #10052

    Логическая функция \(F\) задаётся выражением:

    \((\overline{z \vee \overline y}) \vee (w \wedge (z \equiv y)) \)

    Составьте её таблицу истинности. В качестве ответа введите сумму значений \(z,\) \(y\) и \(w,\) при которых \(F = 1.\)

    \[\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline w & y & z & \overline y & z \vee \overline y & \overline{z \vee \overline y} & z \equiv y & w \wedge (z \equiv y) & \overline z \vee \overline y \vee w \wedge (z \equiv y) \\ \hline 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ \hline \end{array}\]

    1. \((\overline{z \vee \overline y}) = \overline z \wedge y \)

    2. В таблице истинности будет \(2^3 = 8\) строк.

    3. Если \(z = 1 \) и \(y = 1,\) \(то (z \equiv y) = 1 \) (так как эквивалентность истинна тогда и только тогда, когда оба высказывания одновременно ложны или истинны). \(\overline z \wedge y = 0\) \((0 \wedge 1 = 0).\) Если \(w = 1,\) \(w \wedge (z \equiv y) = 1\) \((1 \wedge 1 = 1)\) и \(F = 1,\) так как дизъюнкция истинна, если истинно хотя бы одно из входящих в нее высказываний (строка 8 в таблице истинности). Если \(w = 0,\) \(w \wedge (z \equiv y) = 0\) \((0 \wedge 1 = 0)\) и \(F = 0,\) так как оба высказывания, входящие в дизъюнкцию, ложны (строка 4).

    4. Аналогично для \(z = 0, y = 0.\) \((z \equiv y) = 1,\) \(\overline z \wedge y = 0\) \((1 \wedge 0 = 0).\) Тогда снова значение функции будет зависеть от \(w.\) При \(w = 1\) \(w \wedge (z \equiv y) = 1,\) \(F = 1,\) так как одно из высказываний, входящих в дизъюнкцию, истинно (строка 5), а при \(w = 0\) \(w \wedge (z \equiv y) = 0,\) \(F = 0,\) так как все высказывания ложны (строка 1).

    5. Если \(z = 0\) и \(y = 1,\) то \(\overline z \wedge y = 1\) \((1 \wedge 1 = 1).\) Так как \((z \equiv y) = 0\) (ведь значения \(z\) и \(y\) различны), будет ложна при любом \(w.\) Тогда, так как значение переменной \(w\) не будет влиять на значение функции, при \(z = 0\) и \(y = 1\) \(w\) может быть как 0, так и 1. \(F = 1,\) так как одно из высказываний, входящих в дизъюнкцию, истинно (строки 3, 7).

    6. Если \(z = 1\) и \(y = 0,\) то \(\overline z \wedge y = 0 \wedge 0 = 0.\) Так как \((z \equiv y) = 0,\) \(w \wedge (z \equiv y) = w \wedge 0\) будет ложна при любом \(w\) (то есть \(w\) может быть и 0 и 1). Значит, при \(z = 1\) и \(y = 0\) \(F\) всегда будет ложна (так как оба высказывания, входящих в дизъюнкцию, ложны, строки 2, 5).

    7. \(F = 1\) при следующих наборах \(z,\) \(y,\) \(w:\) (0, 0, 1), (0, 1, 1), (1, 1, 1), (0, 1, 0). Если просуммировать значения, то получим 7.

    Ответ: 7

    Задание 4 #10053

    Логическая функция \(F\) задаётся выражением:

    \(a \wedge ((\overline{b \wedge c}) \vee (a \wedge \overline b) \vee (\overline c \wedge a)) \)

    Составьте её таблицу истинности. В качестве ответа введите сумму значений \(a,\) \(b\) и \(c,\) при которых \(F = 1.\)

    \[\begin{array}{|c|c|c|c|} \hline a & b & c & F\\\hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ \hline \end{array}\]

    1. В таблице истинности \(2^3 = 8\) строк.

    2. При \(a = 0\) \(F = 0\) при любых значениях \(b\) и \(c,\) так как конъюнкция истинна тогда и только тогда, когда все высказывания, входящие в нее, истинны (строки 1-4 в таблице истинности).

    3. Рассмотрим случаи, когда \(a = 1.\) Если \(\overline {(b \wedge c)} \vee (a \wedge \overline b) \vee (\overline c \wedge a) = 1,\) то \(F = 1\) (так как оба высказывания будут истинны), иначе \(F = 0\) (так как одно высказывание будет ложно). По закону де Моргана \(\overline{b \wedge c} = \overline b \vee \overline c.\) Тогда, учитывая, что \(a = 1,\) \(\overline {(b \wedge c)} \vee (a \wedge \overline b) \vee (\overline c \wedge a) = \overline b \vee \overline c \vee \overline b \vee \overline c = \overline b \vee \overline c.\)

    4. Если \(\overline b = 0\) и \(\overline c = 0\) (одновременно, то есть при \(b = 1\) и \(c = 1),\) то \(\overline b \vee \overline c = 0\) и \(F = 0\) (строка 8). В остальных случаях \(\overline b \vee \overline c = 1\) и \(F = 1\) (строки 5-7).

    5. Наборы \((x,\) \(y,\) \(z),\) при которых \(F = 1:\) (1, 0, 0), (1, 1, 0), (1, 0, 1). Сумма значений равна 5.

    Ответ: 5

    Задание 5 #10054

    Логическая функция \(F\) задаётся выражением:

    \(((a \wedge b) \vee (b \wedge c)) \equiv ((d \rightarrow a) \vee (b \wedge \overline c)) \)

    Составьте таблицу истинности. В качестве ответа введите сумму значений \(a,\) при которых \(F = 0.\)

    \[\begin{array}{|c|c|c|c|c|} \hline a & b & c & d & F\\\hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 \\ \hline \end{array}\]

    1. По закону дистрибутивности \((a \wedge b) \vee (b \wedge c) = b \wedge (a \vee c).\)

    2. \(d \rightarrow a = \overline d \vee a.\)

    3. \(((a \wedge b) \vee (b \wedge c)) \equiv ((d \rightarrow a) \vee (b \wedge \overline c)) = b \wedge (a \vee c) \equiv (\overline d \vee a \vee (b \wedge \overline c)) .\)

    4. Если \(b = 0,\) то левая часть функции равна 0 \((0 \wedge (a \vee c) = 0).\) \(b \wedge \overline c = 0 \wedge \overline c = 0.\) Значит, для \(b = 0\) \(c\) может быть любым, так как не влияет на значение функции. \(F = 1,\) если \(\overline d \vee a = 0\) (тогда одно из выражений, входящих в дизъюнкцию, будет истинно). Это выполняется при \(\overline d = 0\) \((d = 1)\) и \(a = 0\) (строки 2, 3). При других \(d\) и \(a\) \(\overline d \vee a = 0,\) значит, \(F = 0,\) так как операция эквивалентности истинна тогда и только тогда, когда оба высказывания одновременно истинны или ложны (строки 1, 10 в таблице истинности).

    5. Если \(b = 1,\) то \(b \wedge (a \vee c) = 1 \wedge (a \vee c) = a \vee c.\) \(b \wedge \overline c = 1 \wedge \overline c = \overline c.\) Тогда имеем, что \(a \vee c \equiv \overline d \vee a \vee \overline c.\) Если \(a = 1,\) то \(a \vee c = 1 \) и \(\overline d \vee a \vee \overline c = 1,\) так как дизъюнкция истинна, если хотя бы одно из выражений истинно (а в обеих дизъюнкциях есть \(a = 1).\) Тогда, если \(b = 1\) и \(a = 1,\) \(F = 1\) при любых \(c\) и \(d\) (строки 5, 7, 8, 11).

    Если \(a = 0,\) то \(a \vee c = 0 \vee c = c,\) а \(\overline d \vee a \vee \overline c = \overline d \vee \overline c.\) Имеем: \(c \equiv (\overline d \vee \overline c).\) При \(c = 1\) \(1 \equiv \overline d.\) При \(d = 1\) \(F = 0,\) так как высказывания различны (строка 4), при \(d = 0\) \(F = 1,\) так как оба высказывания истинны (строка 14). При \(c = 0\) \(0 \equiv (\overline d \vee 1).\) Так как \(\overline d \vee 1\) - дизъюнкция, в которой одно из высказываний истинно, то и вся дизъюнкция истинна. Тогда \(0 \equiv 1,\) что неверно, значит, \(F = 0\) при любых \(d\) (строка 9, 16).

    По построенной таблице видим, что \(F = 0\) при \(a = 0\) (строки 1, 4, 9, 10, 16) и при \(a = 1\) (строки 6, 12, 13, 15). Тогда сумма значений равна 0 * 5 + 1 * 4 = 4.

    Ответ: 4

    Задание 6 #10055

    Логическая функция \(F\) задаётся выражением:

    \((a \equiv (b \vee \overline c)) \rightarrow (c \wedge (b \vee a)) \)

    Составьте таблицу истинности. В качестве ответа введите сумму значений \(c,\) при которых \(F = 1.\)

    \[\begin{array}{|c|c|c|c|} \hline a & b & c & F\\\hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline \end{array}\]

    В таблице \(2^3 = 8\) строк.

    1. Импликация ложна тогда и только тогда, когда из истинного высказывания следует ложное. Значит, \(F = 0,\) если a \(c \wedge (b \vee a) = 0.\) В остальных случаях \(F = 1.\) Рассмотрим, при каких значениях \(a,\) \(b\) и \(c\) \(a \equiv (b \vee \overline c) = 1\) (если \(a \equiv (b \vee \overline c) = 0,\) то \(F = 1\) при любом значении \(c \wedge (b \vee a) = 0).\)

    Если \(a = 0,\) то, чтобы выполнялось \(a \equiv (b \vee \overline c) = 1,\) необходимо \(b \vee \overline c = 0\) (ведь операция эквивалентности истинна тогда и только тогда, когда оба высказывания истинны или оба ложны). Чтобы дизъюнкция \((b \vee \overline c)\) была ложна, оба высказывания, входящие в нее, должны быть ложны, то есть \(b = 0\) и \(\overline c = 0\) \((c = 1).\) При таких значениях \(c \wedge (b \vee a) = 1 \wedge (0 \vee 0) = 0.\) Тогда \((a \equiv (b \vee \overline c)) \rightarrow (c \wedge (b \vee a)) = 1 \rightarrow 0 = 0,\) \(F = 0.\) Это соответствует строке 2 из таблицы истинности.

    Если \(a = 1,\) то чтобы выполнялось \(a \equiv (b \vee \overline c) = 1,\) \(b \vee \overline c = 1.\) Это выполняется в нескольких случаях. Если \(b = 1,\) то \(c\) может быть равна и нулю и единице, ведь одно из высказываний, входящих в дизъюнкцию, уже истинно. При \(c = 1\) \(c \wedge (b \vee a) = 1 \wedge 1 = 1,\) тогда \(F = 1\) (так как \(1 \rightarrow 1 = 1,\) строка 7). При \(c = 0\) \(c \wedge (b \vee a) = 0 \wedge 1 = 0,\) значит, \(F = 0\) \((1 \rightarrow 0 = 0,\) строка 6). Если \(b = 0,\) то \(\overline c = 1\) \((c = 0,\) тогда одно из высказываний, входящих в дизъюнкцию, будет истинным). В таком случае \(c \wedge (b \vee a) = 0 \wedge (0 \vee 1) = 0.\) \(F = 0,\) так как \(1 \rightarrow 0 = 0\) (строка 5).

    2. При других значениях \(a,\) \(b\) и \(c\) \(F = 1,\) потому что \(a \equiv (b \vee \overline c) = 0\) (строки 1, 3, 7, 8).

    3. Из составленной таблицы истинности видим, что \(F = 1\) при \(c = 0\) (строки 1, 4) и при \(c = 1\) (строки 3, 7, 8). Сумма значений равна 0 * 2 + 1 * 3 = 3.\(2^4 = 16\) строк.

    1. Так как конъюнкция ложна, если ложно хотя бы одно из высказываний, то при \(d = 0\) \(F = 0\) при любых \(a,\) \(b\) и \(c\) (строки 1, 6-10, 12, 14 в таблице истинности).

    2. Рассмотрим случай, когда \(d = 1.\) Тогда \((a \rightarrow b) \wedge (b \equiv c) \wedge d = (a \rightarrow b) \wedge (b \equiv c) \wedge 1 = (a \rightarrow b) \wedge (b \equiv c).\) При \(b = 1\) \(a \rightarrow b = a \rightarrow 1 = 1\) при любом \(a,\) так как импликация ложна тогда и только тогда, когда из истинного высказывания следует ложное. Если \(c = 1,\) то \(b \equiv c = 1,\) так как операция эквивалентности истинна, когда оба выражения истинны или оба ложны, и \(F = 1\) (так как все выражения, входящие в конъюнкцию, истинны). Это соответствует строкам 4 и 5. Если \(c = 0,\) то \(b \equiv c = 0,\) \(F = 0,\) так как одно из выражений, входящее в конъюнкцию, ложно (строки 11 и 16).

    При \(b = 0:\) если \(a = 1,\) то \(a \rightarrow b = 1 \rightarrow 0 = 0,\) тогда одно из выражений, входящих в конъюнкцию, ложно, и \(F = 0\) при любом \(c\) (строки 13 и 15). Если \(a = 0,\) то \(a \rightarrow b = 0 \rightarrow 0 = 1.\) Если \(c = 0,\) то \(b \equiv c = 0 \equiv 0 = 1,\) \(F = 1,\) так как оба выражения, входящих в конъюнкцию, истинны (строка 2). Если \(c = 1,\) то \(b \equiv c = 0 \equiv 1 = 0,\) \(F = 0,\) так как одно из выражений, входящих в конъюнкцию, ложно (строка 3).

    Таким образом, \(F = 1\) при \(d = 1\) (строки 2, 4, 5). Сумма значений \(d\) равна 1 * 3 = 3.

    Назначение сервиса . Онлайн-калькулятор предназначен для построения таблицы истинности для логического выражения .
    Таблица истинности – таблица содержащая все возможные комбинации входных переменных и соответствующее им значения на выходе.
    Таблица истинности содержит 2 n строк, где n – число входных переменных, и n+m – столбцы, где m – выходные переменные.

    Инструкция . При вводе с клавиатуры используйте следующие обозначения: Например, логическое выражение abc+ab~c+a~bc необходимо ввести так: a*b*c+a*b=c+a=b*c
    Для ввода данных в виде логической схемы используйте этот сервис .

    Правила ввода логической функции

    1. Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
    2. Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
    3. Максимальное количество переменных равно 10 .

    Проектирование и анализ логических схем ЭВМ ведётся с помощью специального раздела математики - алгебры логики. В алгебре логики можно выделить три основные логические функции: "НЕ" (отрицание), "И" (конъюнкция), "ИЛИ" (дизъюнкция).
    Для создания любого логического устройства необходимо определить зависимость каждой из выходных переменных от действующих входных переменных такая зависимость называется переключательной функцией или функцией алгебры логики.
    Функция алгебры логики называется полностью определённой если заданы все 2 n её значения, где n – число выходных переменных.
    Если определены не все значения, функция называется частично определённой.
    Устройство называется логическим, если его состояние описывается с помощью функции алгебры логики.
    Для представления функции алгебры логики используется следующие способы:

    • словесное описание – это форма, которая используется на начальном этапе проектирования имеет условное представление.
    • описание функции алгебры логики в виде таблицы истинности.
    • описание функции алгебры логики в виде алгебраического выражения: используется две алгебраические формы ФАЛ:
      а) ДНФ – дизъюнктивная нормальная форма – это логическая сумма элементарных логических произведений. ДНФ получается из таблицы истинности по следующему алгоритму или правилу:
      1) в таблице выбираются те строки переменных для которых функция на выходе =1 .
      2) для каждой строки переменных записывается логическое произведение; причём переменные =0 записываются с инверсией.
      3) полученное произведение логически суммируется.
      Fднф= X 1 *Х 2 *Х 3 ∨ Х 1 x 2 Х 3 ∨ Х 1 Х 2 x 3 ∨ Х 1 Х 2 Х 3
      ДНФ называется совершенной, если все переменные имеют одинаковый ранг или порядок, т.е. в каждое произведение обязательно должны включаться все переменные в прямом или инверсном виде.
      б) КНФ – конъюнктивная нормальна форма – это логическое произведение элементарных логических сумм.
      КНФ может быть получена из таблицы истинности по следующему алгоритму:
      1) выбираем наборы переменных для которых функция на выходе =0
      2) для каждого набора переменных записываем элементарную логическую сумму, причём переменные =1 записываются с инверсией.
      3) логически перемножаются полученные суммы.
      Fскнф=(X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3) ∧ (X 1 V X 2 V X 3)
      КНФ называется совершенной , если все переменные имеют одинаковый ранг.
    По алгебраической форме можно построить схему логического устройства , используя логические элементы.

    Рисунок1- Схема логического устройства

    Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможны х логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.

    Операция НЕ - логическое отрицание (инверсия)

    Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:
    • если исходное выражение истинно, то результат его отрицания будет ложным;
    • если исходное выражение ложно, то результат его отрицания будет истинным.
    Для операции отрицания НЕ приняты следующие условные обозначения:
    не А, Ā, not A, ¬А, !A
    Результат операции отрицания НЕ определяется следующей таблицей истинности:
    A не А
    0 1
    1 0

    Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

    Операция ИЛИ - логическое сложение (дизъюнкция, объединение)

    Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.
    Применяемые обозначения: А или В, А V В, A or B, A||B.
    Результат операции ИЛИ определяется следующей таблицей истинности:
    Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В - ложны.

    Операция И - логическое умножение (конъюнкция)

    Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.
    Применяемые обозначения: А и В, А Λ В, A & B, A and B.
    Результат операции И определяется следующей таблицей истинности:
    A B А и B
    0 0 0
    0 1 0
    1 0 0
    1 1 1

    Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

    Операция «ЕСЛИ-ТО» - логическое следование (импликация)

    Эта операция связывает два простых логических выражения, из которых первое является условием, а второе - следствием из этого условия.
    Применяемые обозначения:
    если А, то В; А влечет В; if A then В; А→ В.
    Таблица истинности:
    A B А → B
    0 0 1
    0 1 1
    1 0 0
    1 1 1

    Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

    Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

    Применяемое обозначение: А ↔ В, А ~ В.
    Таблица истинности:
    A B А↔B
    0 0 1
    0 1 0
    1 0 0
    1 1 1

    Операция «Сложение по модулю 2» (XOR, исключающее или, строгая дизъюнкция)

    Применяемое обозначение: А XOR В, А ⊕ В.
    Таблица истинности:
    A B А⊕B
    0 0 0
    0 1 1
    1 0 1
    1 1 0

    Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

    Приоритет логических операций

    • Действия в скобках
    • Инверсия
    • Конъюнкция (&)
    • Дизъюнкция (V), Исключающее ИЛИ (XOR), сумма по модулю 2
    • Импликация (→)
    • Эквивалентность (↔)

    Совершенная дизъюнктивная нормальная форма

    Совершенная дизъюнктивная нормальная форма формулы (СДНФ) это равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций, обладающая свойствами:
    1. Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
    2. Все логические слагаемые формулы различны.
    3. Ни одно логическое слагаемое не содержит переменную и её отрицание.
    4. Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.
    СДНФ можно получить или с помощью таблиц истинности или с помощью равносильных преобразований.
    Для каждой функции СДНФ и СКНФ определены единственным образом с точностью до перестановки.

    Совершенная конъюнктивная нормальная форма

    Совершенная конъюнктивная нормальная форма формулы (СКНФ) это равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций, удовлетворяющая свойствам:
    1. Все элементарные дизъюнкции содержат все переменные, входящие в функцию F(x 1 ,x 2 ,...x n).
    2. Все элементарные дизъюнкции различны.
    3. Каждая элементарная дизъюнкция содержит переменную один раз.
    4. Ни одна элементарная дизъюнкция не содержит переменную и её отрицание.

    1. Определить порядок действий.

    2. Определить размерность таблицы истинности.


    Количество столбцов определяется количеством логических переменных (их две А, В) и количеством действий (их тоже два).


    4. Сформулировать ответ.
    В последнем столбце один "0", соответствующий А, равному "1", и В, равному "0". Получается, что данная функция ложна тогда и только тогда, когда логическая переменная А истинна, а логическая переменная В ложна, что соответствует логической функции СЛЕДСТВИЕ.
    Значит, данная функция равна логическому следствию переменных А и В: Если А, то В.

    Составить таблицу истинности для логической функции:


    1. Определить порядок действий.


    2. Определить размерность таблицы истинности.

    "Шапка" таблицы содержит две строки - номера действий и логические операции действий.
    Количество столбцов определяется количеством логических переменных (их две А, В) и количеством действий (их пять).
    Количестко строк в таблице равно двойке в степени, равной количеству логических переменных - в случае двух переменных получается 4 строки..
    3. Поочередно заполнить столбики таблицы в соответствии с логической функцией данного столбца.


    4. Сформулировать ответ.
    В последнем столбце "1", соответствуют А равному В, а "0" - А неравному В. Получается, что данная функция истинна, когда А равно В и ложна, когда А не равно В, что соответствует логической функции ТОЖДЕСТВО.
    Значит, данная функция равна логическому ТОЖДЕСТВУ переменных А и В: А тождественно В.

    При составлении таблицы истинности для логического выражения необходимо:

      Выяснить количество строк в таблице (вычисляется как 2 n , где n – количество переменных).

      Выяснить количество столбцов (определяется как количество переменных + количество логических операций).

      Установить последовательность выполнения логических операций.

      Построить таблицу, указывая названия столбцов и возможные наборы значений исходных логических переменных.

      Заполнить таблицу истинности по столбцам.

    Контрольный пример . Построить таблицу истинности для выражения F = (A V B) & (¬A V ¬B).

    Количество строк в таблице определяется как 2 2 (2 переменных) + 1 (заголовок таблицы) = 5.

    Количество столбцов – как 2 логические переменные (A, B) + 5 логических операций (&, V, ¬, →, ↔).

    Расставим порядок выполнения операций:

    (A V B) & (¬A V ¬B).

    Построим таблицу истинности для данного логического выражения (таблица 5).

    Таблица 5 – Таблица истинности для логического выражения

    (A V B) & (¬A V ¬B)

    Контрольный пример . Построить таблицу истинности для логического выражения X V Y & ¬Z.

    Количество строк = 2 3 + 1 = 9.

    Количество столбцов = 3 логические переменные + 3 логических операций = 6.

    Укажем порядок действий:

    Нарисуем и заполним таблицу 6:

    Таблица 6 – Таблица истинности для логического выражения

    1.4 Построение логических схем

    С точки зрения логики электрический ток либо течет, либо не течет; электрический импульс есть или нет; электрическое напряжение есть или нет. Рассмотрим электрические контактные схемы, реализующие логические операции (схемы 1 – 3). На схемах 1 – 3 контакты обозначены латинскими буквами A и B.

    Схема 1 – Конъюнкция Схема 2 – Дизъюнкция Схема 3 – Инверсия

    (автоматический ключ)

    Схема 4 – Конъюнктор Схема 5 – Дизъюнктор Схема 6 – Инвертор

    Цепь на схеме 1 с последовательным соединением контактов соответствует логической операции «И» и представляется конъюнктором (схема 4). Цепь на схеме 2 с параллельным соединением контактов соответствует логической операции «ИЛИ» и представляется дизъюнктором (схема 5). Цепь на схеме 3 (электромагнитное реле) соответствует логической операции «НЕ» и представляется инвертором (схема 6).

    Именно такие электронные схемы нашли свое применение в качестве элементной базы ЭВМ. Элементы, реализующие базовые логические операции, назвали базовыми логическими элементами или вентилями и характеризуются они не состоянием контактов, а наличием сигналов на входе и выходе элемента. Их названия и условные обозначения являются стандартными и используются при составлении и описании логических схем компьютера.

    Логические схемы необходимо строить из минимально возможного количества элементов, что, в свою очередь, обеспечивает большую скорость работы и увеличивает надежность устройства.

    Правило построения логических схем:

      Определить число логических переменных.

      Определить количество базовых логических операций и их порядок.

      Изобразить для каждой логической операции соответствующий ей вентиль.

      Соединить вентили в порядке выполнения логических операций.

    Контрольный пример. Пусть X = Истина (1), Y = Ложь (0). Составьте логическую схему для следующего логического выражения: F = X V Y & X.

    1) Две переменные –X и Y.

    2) Две логические операции: X V Y & X.

    3) Строим схему (рисунок 3).

    4) Ответ: 1 V 0 & 1 = 1.

    Рисунок 3 – Логическая схема для логического выражения F = X V Y & X

    Загрузка...